#### engys UGM2024

Brooklands Museum Weybridge, England 23 to 25 of October

## **RBF Morph**

#### Interactive sculpting and FSI with the rbfCAE platform

Marco Evangelos Biancolini CTO and company founder





## Outline

engys UGM2024

- An overview about the rbfCAE platform
- Typical usage scenarios and applications
- Fast design exploration with interactive adjoint sculpting
- Fluid-structure interaction example by modes embedding
- Next steps? Automatic CAD connection, ROM and VR
- Conclusions



engys UGM2024

Brooklands Museum Weybridge, England 23 to 25 of October

## rbfCAE platform overview



24/10/2024

## radial basis functions morphing of CAE models - rbfCAE

iengys UGM2024

Brooklands Museum Weybridge, England 23 to 25 of October

- Geometric control by radial basis functions CAE morphing

   Surface shape changes
  - o Volume mesh adaption
- A new shape of the CAE model ready to run

o for structures in the FEA solver o for flows in the CFD solver



#### Radial Basis Functions Excellence

- We offer best in class **Radial Basis Functions** (RBF) to drive CAE morphing from a list of source points and their displacements
- RBF are recognized to be one of the **best mathematical tool** for mesh morphing



$$\begin{aligned} \text{Fast Radial} \\ \text{Fast Radial} \\ \text{Basis Functions} \\ \text{for Engineering} \\ \text{Applications} \end{aligned} \begin{cases} s_x(x) = \sum_{i=1}^N \gamma_i^x \varphi(\|x - x_{s_i}\|) + \beta_1^x + \beta_2^x x + \beta_3^x y + \beta_4^x z \\ s_y(x) = \sum_{i=1}^N \gamma_i^y \varphi(\|x - x_{s_i}\|) + \beta_1^y + \beta_2^y x + \beta_3^y y + \beta_4^y z \\ s_z(x) = \sum_{i=1}^N \gamma_i^z \varphi(\|x - x_{s_i}\|) + \beta_1^z + \beta_2^z x + \beta_3^z y + \beta_4^z z \end{aligned}$$



#### **EU-funded research projects**

#### engys UGM2024









/4/EuroHPC



## rbfCAE solution benefits

www.rbf-morph.com

#### engys UGM**202**4

Brooklands Museum Weybridge, England 23 to 25 of October



No re-meshing

- Can handle any kind of mesh
- Can be integrated in the CAE solver (FEM/CFD/FSI)
- Highly parallelizable
- Robust process
- The same mesh topology is preserved (adjoint/ROM)
- CAD morphing (iso-brep)

## rbfCAE parametric models

#### engys UGM2024

- **rbfCAE** makes the CAE model **parametric**
- Shape parameters can be driven by an orchestrator
- Shape parameters can be used to generate snapshots for real time Digital Twins (ROM/AI)



## rbfCAE solution



#### engys UGM2024

- Released in 2024
- Read in STL, STEP
- Unity -OpenCascade
- Solver independent process that supports many mesh formats
- Scriptable via python

#### rbfCAE UI





- Released in 2024
- Read in STL, STEP
- Unity -OpenCascade
- Solver independent process that supports many mesh formats
- Scriptable via Python



## **Typical usage scenarios and applications**

engys **UGM2024 Brooklands Museum** Weybridge, England

23 to 25 of October

#### engys UGM2024

Brooklands Museum Weybridge, England 23 to 25 of October

## Main uses of rbfCAE

| Usage                                                                                                                                | FEA          | CFD          | Optimizer    | Al           |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|--------------|
| Automated and quick variable design space exploration.                                                                               | $\checkmark$ | $\checkmark$ |              |              |
| Optimization (Single physics or multi-physics). Shape optimization for stress reduction, mass reduction, fluid-structure interaction | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |
| Digital twin development (static ROMs)                                                                                               | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Lifing applications simulate defects such as corrosion pits, spalling of material, erosion, chips, etc.                              | $\checkmark$ | $\checkmark$ |              |              |
| Examine the effects of non-conformance and manufacturing variability                                                                 | $\checkmark$ | $\checkmark$ |              |              |
| Robust Design                                                                                                                        | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |



## Served industries

#### **100+** Global Customers

#### engys UGM2024





Brooklands Museum Weybridge, England 23 to 25 of October

# Fast design exploration with interactive adjoint sculpting



## Adjoint sensitivities in combination with shape parameters

• The CFD adjoint formulation provides the **sensitivities** of an objective function **with respect to surface displacements**.



- **rbfCAE** provides the **deformation velocity**.
- The **deformation velocity** can be mapped onto the high fidelity mesh where the **sensitivities** are known regardless the mesh we use to warp the surface (topology, spacing).
- The design parameter **b** can be mesh based (rotation, translation, scaling, offset of a node, edge, surface, ...) or CAD based (tweaking of a spline, a NURBS, ...)



engys

Brooklands Museum Wevbridge, England

23 to 25 of October

UGM2024

#### engys UGM2024

#### rbfAdjoint usage example

- The adjoint sensitivity on the CFD surface mesh computed by HELYX
- The **efficiency** of a simple Formula 1 front end is investigated



## Step 1 – read in the CAD model

- Baseline CAD is imported as a step file
- The entities on the CAD (edges, surfaces) are controlled
- Simple operations are possible (scaling, rotation, translation)
- Combined operations are possible (nesting operations on different entities)







## Step 2 – read in the CFD mesh

- The surface mesh of the CFD model is imported as an STL file
- The mesh matches the underlying CAD in space
- The topology is not related to the CAD (dead mesh)
- The resolution is very fine making the mesh capable to represent new geometries



18

RBF Morph - www.rbf-morph.com

engys UGM2024

# Step 3 – read in the adjoint sensitivities

- Adjoint sensitivities on the CFD surface are exported from the CFD solver and available on surface mesh vertexes
- The information is attached to the CFD mesh imported in Step 2
- Multiple maps can be imported (Drag, Lift, ...)
- The imported map of this example is the wing efficiency



engys



## Step 4 – interactive shape control

- We use RBF editing to warp the CFD mesh
- The CFD mesh is added to the RBF Region 1 and will receive the morphing
- An auxiliary mesh is generated on the CAD to enable RBF
- The nose surface is controlled imposing the movements of the edges





engys

**Brooklands Museum** Weybridge, England

23 to 25 of October

**UGM2024** 

# Step 5 – the CFD mesh is morphed

#### engys UGM2024

- The CFD mesh receives the intended morphing action
- The morphing action is controlled by the trimmed CAD model
- The morphing can be reverted and repeated while tweaking the profile of the nose



### Step 6 – interactive performance evaluation

- At each morphing the sensitivities are integrated over the morphing field
- The change of the observable (the efficiency in this case) is reported in the dashboard
- The CFD mesh is now colored with the local effect (i.e. the product of the sensitivity and the displacement field)



#### engys **UGM2024**

**Brooklands Museum** Weybridge, England



Brooklands Museum Weybridge, England 23 to 25 of October

## Fluid-Structure Interaction example by modes embedding



# Introduction to FSI application Mesh

- Mesh file provided.
- Wind turbine blade immersed in a box-shaped simulation volume.
- Hybrid structured + unstructured mesh with 14,7 million cells.
- Mesh regions and blade areas were merged.

24





## Introduction to FSI application CFD Setup

U =18 m/s

wind turbine blade

XY

- URANS
- K- $\omega$  SST turbulence model
- HELYX-Coupled solver
- "Opening" boundary condition for simulation volume surfaces and standard "Wall" for blade
- 1 configuration analysed:

   o P100I30: Pitch 100° and Inclination 30°
   o Absolute velocity of wind 18 m/s





enqus

### Mesh deformation

#### engys UGM2024

- A set of nodes were sampled along the wing's longitudinal centreline. For each sampled node set of RBF source points are generated on a circle controlled by the local cross section movements (displacement and rotations).
- A box-shaped domain was set to delimit the volume in which morphing is applied.
- The RBF solution setup was amplified according to a sinusoidal law of unit amplitude and frequency of 0.67 Hz.
- Bi-harmonic kernel phi(r)=r was adopted in the volume.
- The morphing library was used to generate the data to apply morphing during HELYX's computing.



### **Results – General information**

- The HELYX's case ran with 64 processors equipped with EPYC 7351 (2.4 GHz).
- The full run simulated 10.45 seconds of motion and took almost exactly 13 hours adopting a timestep size of t = 0.006 s.
- Main numerical results of interest in Ensight format were provided.



engys

Brooklands Museum Weybridge, England 23 to 25 of October

**UGM2024** 



#### **Results – Animations**

#### iengys UGM2024







#### engys UGM2024

Brooklands Museum Weybridge, England 23 to 25 of October

#### **Results – Animations**





Brooklands Museum Weybridge, England 23 to 25 of October

## Next steps? Automatic CAD connection, ROM and VR



## **ROM and VR**



#### engys UGM2024



## Sedan Car Aero optimization

#### engys UGM2024

Brooklands Museum Weybridge, England 23 to 25 of October

- Two shape parameters are defined.
- Design variations explored in real-time.



rbf

## Open Parametric Aircraft Model (OPAM) testcase

- Parametric CAD model of the OPAM, an aircraft model inspired by the Boeing 787-800 Dreamliner
- 6 shape parameters are considered and 66 snapshots generated
- **ROC tool** prototype in action!



engys

Brooklands Museum Wevbridge, England

23 to 25 of October

**UGM2024** 

|          | Aspect r | Sweep   | Alpha b | Camber b    | Alpha t  | Camber t    |
|----------|----------|---------|---------|-------------|----------|-------------|
| Range    | 8 ÷ 10   | 33 ÷ 37 | -5 ÷ -1 | 0.02 ÷ 0.06 | -10 ÷ -6 | 0.02 ÷ 0.06 |
| Baseline | 9        | 35      | -3      | 0.04        | -8       | 0.04        |



## Open Parametric Aircraft Model (OPAM) testcase

- Parametric CAD model of the OPAM, an aircraft model inspired by the Boeing 787-800 Dreamliner
- 6 shape parameters are considered and 66 snapshots generated
- ROC tool prototype in action!

engys UGM2024



## Conclusions

#### engys UGM2024

- The new rbfCAE platform has been introduced
- rbfCAE is coupled with ENGYS's software (rbf4Helyx connector) providing a joint solution for:
  - o Automatic design exploration
  - o Interactive sculpting leveraged by adjoint
  - o One-way fluid-structure interaction
- We will soon support:

   Two-way fluid-structure interaction
   AI based solutions and ROM
   VR interactions



## Thank you!

#### marco.biancolini@rbf-morph.com



linkedin.com/company/rbf-morph



youtube.com/user/RbfMorph



rbf-morph.com



engys UGM2024