

RBF Morph

Empowering Automotive External Aerodynamics Using Advanced RBF Mesh Morphing Methods

Marco Evangelos Biancolini CTO and company founder

Outline

- A short introduction of RBF Morph technology and company
- Typical usage scenario and applications
- The solution offered in combination with ENGYS
- Examples
- What's next?
- Conclusions

Frankfurt, Germany 23 to 25 October 2023

A quick introduction of RBF Morph

RBF Morph - www.rbf-morph.com

23 to 25 October 2023

Shape parameterization strategy

- Geometric parameterization by mesh morphing
- The principle is to take the control on a set of point and to transfer the deformation to the whole mesh
- A **new shape** of the CAE model **ready to run**

o for structural analysis in the FEA solver

o for flow analysis in the CFD solver

Frankfurt, Germany 23 to 25 October 2023

Radial Basis Functions mesh Morphing

- We offer Radial Basis Functions (RBF) to drive mesh morphing (smoothing) from a list of source points and their displacements
- RBF are recognized to be one of the **best mathematical tool** for mesh morphing

$$\begin{cases} s_{x}(\boldsymbol{x}) = \sum_{i=1}^{N} \gamma_{i}^{x} \varphi(\|\boldsymbol{x} - \boldsymbol{x}_{s_{i}}\|) + \beta_{1}^{x} + \beta_{2}^{x} x + \beta_{3}^{x} y + \beta_{4}^{x} z \\ s_{y}(\boldsymbol{x}) = \sum_{i=1}^{N} \gamma_{i}^{y} \varphi(\|\boldsymbol{x} - \boldsymbol{x}_{s_{i}}\|) + \beta_{1}^{y} + \beta_{2}^{y} x + \beta_{3}^{y} y + \beta_{4}^{y} z \\ s_{z}(\boldsymbol{x}) = \sum_{i=1}^{N} \gamma_{i}^{z} \varphi(\|\boldsymbol{x} - \boldsymbol{x}_{s_{i}}\|) + \beta_{1}^{z} + \beta_{2}^{z} x + \beta_{3}^{z} y + \beta_{4}^{z} z \end{cases}$$

Radial Basis Functions mesh Morphing

 Geometric control by Radial Basis Functions mesh Morphing

o Surface shape changes o Volume mesh adaption

• A new shape of the CAE model ready to run

o for structures in the FEA solver o for flows in the CFD solver

Radial Basis Functions mesh Morphing

www.rbf-morph.com

- No re-meshing
- Can handle any kind of mesh
- Can be integrated in the CAE solver (FEM/CFD/FSI)
- Highly parallelizable
- Robust process
- The same mesh topology is preserved (adjoint/ROM)

RBF Morph - www.rbf-morph.com

• CAD morphing (iso-brep)

Frankfurt, Germany 23 to 25 October 2023

RBF time line

Ansys RBF Morph products

 An RBF mesh morphing solution fully embedded in Ansys

o RBF Morph Fluids – an Add On for Fluent
o RBF Morph Structures – an ACT App for Mechanical

- Full integration with optiSLang and Twin Builder
- Support for LS-DYNA and APDL

https://www.rbf-morph.com/wp-content/uploads/2023/05/RBFMorph_Brochure.pdf

RBF Morph Stand Alone

- Released in 2011
- Read in STL and CGNS file formats.
- Solver independent process that supports many mesh formats
- Scriptable via tcl
- Same working approach of the Fluent Add On

New RBF Morph Stand Alone

- To be (hopefully!) released in 2024
- Read in STL, STEP
- Unity OpenCascade
- Solver independent process that supports many mesh formats
- Scriptable via python
- Same working approach of ACT for Workbench

We make CAE models parametric

- RBF Morph makes the CAE model parametric
- Shape parameters are driven by an orchestrator
- Shape parameters can be used to generate snapshots for real time Digital Twins (**ROM/AI**)

Frankfurt, Germany 23 to 25 October 2023

Parameter-free shape optimization

Frankfurt, Germany 23 to 25 October 2023

- The new shape can be guided by the CAE solution itself (organic shapes)
 - Coupled with the CFD adjoint solver
 - BGM (Biological Growth Method) optimizer in
 FEA solver

Arcraft Engine life extended! 25% stress reduction

RBF Morph - www.rbf-morph.com

Parameter based mesh morphing (design points/snapshots)

- Morphing regions are identified and added to the tree (volume mesh)
- Surface are controlled by modifying two closed curves
- Design points are computed by changing the two parameters to achieve the optimal design

engys

Frankfurt, Germany 23 to 25 October 2023

UGM2023

Parameter based mesh morphing (design points/snapshots)

Frankfurt, Germany 23 to 25 October 2023

- Morphing regions are identified by fluid zones or by user defined domains
- Surfaces are controlled by two sculpting tools (cylinders)
- Design points are computed by changing the two parameters to achieve the optimal design

Typical usage scenario and applications

engys

Main uses of RBF Morph

Frankfurt, Germany 23 to 25 October 2023

Usage	FEA	CFD	Optimizer	Al
Automated and quick variable design space exploration.	\checkmark	\checkmark		
Optimization (Single physics or multi-physics). Shape optimization for stress reduction, mass reduction, fluid-structure interaction	\checkmark	\checkmark	\checkmark	
Digital twin development (static ROMs)	\checkmark	\checkmark	\checkmark	\checkmark
Lifing applications Simulate defects such as corrosion pits, spalling of material, erosion, chips, etc.	\checkmark	\checkmark		
Examine the effects of non-conformance and manufacturing variability	\checkmark	\checkmark		
Robust Design	\checkmark	\checkmark	\checkmark	

Applications $\iff \heartsuit > 1 2 25 October 2023$

23 to 25 October 2023

EU-funded research projects

Exhaust manifold

AN

Frankfurt, Germany 23 to 25 October 2023

	- 6.	D	6	0	C .		U	n	1
	Name 🔹	PS - Pipe1Curve1	P6- Pipe2	P7 - Pipe4Curve1	P8- Ppe3	P1 - PressureDrop1	P2 - PressureDrop2	P3 - PressureDrop3	P4 - PressureDrop4
2.	-		1 A.			Pa	Pa	Pa	Pa
1	Current	4	4	4	4	12892	11366	13028	16619
4	DP 1	3	3	3	3	12682	11247	13487	16731
5	DP 2	2	2	2	2	12897	11546	13554	16911
6	DP 3	1	1	1	1	13403	11477	13920	17666
7	DP.4	0	0	0	0	13555	11750	13967	17718

Balanced flow and 8% less pressure drop

Lamborghini Aventador engine air box

Optimized -5.9% pressure drop

https://www.rbf-morph.com/wp-content/uploads/2015/12/HSLCAE-CONFJO-07NOV.pdf

RBF Morph - www.rbf-morph.com

FORTISSIMO Frankfurt, Germany 23 to 25 October 2023

rbf

FSI winglet optimization

Range extended by 12%

Alpha Electro Propeller

- Mesh morphing for shape parametrization of numerical grids (CFD/FEM)
- FSI based on mapping and modal superposition
- Performance of the **propeller** are optimised for the specific needs of **electric propulsion (+4% efficiency)**

rbf

RBF4AERO

Frankfurt, Germany 23 to 25 October 2023

Medical Digital Twin Copernicus

Frankfurt, Germany 23 to 25 October 2023

Medical Digital Twin DiTAiD

EuroHPC

Frankfurt, Germany 23 to 25 October 2023

From lung scan to medical use

1) Scan of lungs

3) Digital twin

4) Visualization and interpretation for medical use

2) Extraction of lung

shape parameters

RBF Morph - www.rbf-morph.com

Frankfurt, Germany 23 to 25 October 2023

The solution offered in combination with ENGYS technology

RBF Morph - www.rbf-morph.com

HELYX Mesh Morphing

- RBF Morph Stand Alone allows to apply defined shape modifications to HELYX meshes according to two different approaches:
 - o **Surface mesh morphing**: mesh morphing is applied to STL files on which HELYX builds the volume mesh
 - Volume mesh morphing: the baseline volume mesh is morphed and no mesh built action is required

Frankfurt, Germany 23 to 25 October 2023

HELYX Mesh Morphing

Workflow details

- The current workflow is not automated yet. For each shape modification the surfaces are controlled in the UI and cloud of points are exported to file
- A python script reads in the cloud of points and combine them with encapsulation boxes (at the moment hard-coded in the script)
- The script walks across the partitioned file system and updates the nodes of the volume mesh

F1 Aerodynamics Challenge

- First simple mockup we used as a morphing playground
- Small mesh (12 millions)
- 3 morphing actions on the front wing o Wing span
 - o Twist of end plates
 - o Incidence of end plates

F1 Aerodynamics Challenge

- First simple mockup we used as a morphing playground
- Small mesh (12 millions)
- 3 morphing actions on the front wing
 o Wing span
 o Twist of end plates
 - o Incidence of end plates

F1 Aerodynamics Challenge

 First simple mockup we used as a morphing playground

engys

Frankfurt, Germany 23 to 25 October 2023

UGM2023

- Small mesh (12 millions)
- 3 morphing actions on the front wing

 Wing span
 Twist of end plates
 Incidence of end plates

- Second simple mockup we used as a morphing playground
- Small mesh (5 millions)
- Front width

rbf

- Second simple mockup we used as a morphing playground
- Small mesh (5 millions)
- Front width

- Second simple mockup we used as a morphing playground
- Small mesh (5 millions)
- Front width

- Second simple mockup we used as a morphing playground
- Small mesh (5 millions)
- Front width

- Second simple mockup we used as a morphing playground
- Small mesh (5 millions)
- Driver position

23 to 25 October 2023

DrivAer Surface Mesh Morphing

RBF Morph - www.rbf-morph.com

23 to 25 October 2023

DrivAer Volume Mesh Morphing

Baseline shape Cd = 0.2375

Frankfurt, Germany 23 to 25 October 2023

RBF Morph - www.rbf-morph.com

Optimized shape Cd = 0.2297

Frankfurt, Germany 23 to 25 October 2023

RBF Morph - www.rbf-morph.com

Adding a camera and match aero

Frankfurt, Germany 23 to 25 October 2023

Next Steps?

RBF Morph - www.rbf-morph.com

;engys UGM2023

Frankfurt, Germany 23 to 25 October 2023

Adjoint-based shape optimization

• The adjoint formulation provides the gradient of an objective function with respect to surface displacements.

$$\frac{\delta F}{\delta \vec{b}} = \frac{\delta F}{\delta x_{\kappa}} \frac{\delta x_{\kappa}}{\delta \vec{b}}$$

 RBF Morph provides the deformation velocity (adjoint preview).

Papoutsis-Kiachagias, E. M., Giannakoglou, K. C., Porziani, S., Groth, C., Biancolini, M. E., Costa, E., & Andrejašič, M. (2019). Combining an OpenFOAM®-Based Adjoint Solver with RBF Morphing for Shape Optimization Problems on the RBF4AERO Platform. In *OpenFOAM*® (pp. 65-75). Springer, Cham.

Adjoint-based shape optimization

Frankfurt, Germany 23 to 25 October 2023

 A 7% drag reduction is observed after 15 cycles. Optimal (left) vs. original shape (right).

Drag reduction of a calara Indy car (-0.98%)

Original shape

23 to 25 October 2023

Pressure drop at exhaust port

Baseline

Adjoint Optimized (-7.5%)

Transient pitching simulation – porpoising

Frankfurt, Germany 23 to 25 October 2023

Frankfurt, Germany 23 to 25 October 2023

FSI Example: Indy Race Car

Modes used	Maximum displacement (mm)	Maximum error (%)
1	5.941	8.3
2	5.898	6.5
3	5.584	2.7
4	5.56	1.4
5	5.555	0

rbf

RBF Morph - www.rbf-morph.com

Snow accretion blowing

engys

UGM2023

Snow contamination pattern on the rear of a Volvo S90 driven a distance of 100 km

- Snow contamination pattern after 15-minute solo driving

Next step: ROM and DT development

Frankfurt, Germany 23 to 25 October 2023

- Snapshots collection (80 DPs)
- Static ROM details:
 - o Decomposition algorithms (POD) are used to reduce the number of variables
 - Machine learning allows to correlate each set of input parameters to the output quantities
 - It allows to evaluate in real time both field quantities and scalar outputs

Conclusions

- RBF Morph offers a well proven mesh morphing technology
- The new Stand Alone version is already coupled with ENGYS software
- We have a long experience (15+ years) gained in EC Projects and with industrial applications (120+)
- At the moment we can support parametric analysis in HELYX
- We will soon support

 Fluid structure interaction
 Adjoint
 AI based solutions

Frankfurt, Germany 23 to 25 October 2023

Thank you!

marco.biancolini@rbf-morph.com

linkedin.com/company/rbf-morph

youtube.com/user/RbfMorph

rbf-morph.com

