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ABSTRACT 
 

 

 

In the analysis and design of vehicles, numerical simulation allows to investigate a wide 

range of solutions reducing the time and costs related to the prototyping of new models and 

their experimentation. In recent years, the interest of manufacturers and designers in an 

automated optimization workflow has grown. In industrial practices, however, it is not 

uncommon to manually carry out the optimization, making the whole process of design 

exploration slower and more laborious. This is because multiple programs and tools are usually 

required, and integrating them into a single, seamless workflow is not always easy; moreover, 

when adopting CAD-based geometric parametrization, geometry coherence must be preserved 

and the problem of re-meshing noise due to CAD reconstruction has to be faced. In recent years, 

advances in modern computer performance, as well as the availability of massively affordable 

processing capacity, have enabled ever-more precise analysis and forecasting of physical 

phenomena. In this work an automatic, file-based design exploration workflow built on the 

synergic use of a high-fidelity CFD solver and the meshless commercial morpher RBF Morph 

is presented. First, the studied geometry is parametrized employing the RBF Morph ACT 

Extension within the graphical user interface of ANSYS Mechanical; then, the parametric space 

is explored using an Optimal Space-Filling algorithm, and the morphing files (referring to each 

individual shape variant and each comprising the coordinates and relative displacements of 

appropriate source points used to map the geometry) are generated. These files containing the 

morphing instructions, together with the coordinates of the baseline mesh, are fed to a C++ code 

that processes the information contained therein, makes calls to the RBF libraries, and outputs 

the coordinates corresponding to the deformed geometry. Subsequently, through the use of 

UDF (User-Defined Functions) compiled inside a DLL (Dynamic Linked Library), the 

coordinates of the vertices of the mesh generated within the STAR-CCM+ commercial solver 

are updated and, following the set-up of the simulation file, the CFD analysis on the new shape 

is launched. At the end of the simulation, all the most relevant results of the analysis are 

automatically exported. The entire workflow described above is summarized within a MS-DOS 

script file, which, when launched from the command-line interface, initiates each task of the 

procedure. The proposed method effectiveness is proved with two examples: a drag reduction 

analysis on the ASMO (Aerodynamics Studien Model) idealized car body shape and a case 

study of a Volvo side-view mirror. 
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1. INTRODUCTION 
 

 

 

Analyzing and solving problems involving fluid dynamics is an activity of extreme interest 

in various fields of engineering and other disciplines, such as the aerodynamics of airfoils, the 

hydrodynamics of naval vehicles, meteorology, the automotive sector, bioengineering, 

turbomachinery, and internal combustion engines. The equations that govern the physics of 

these phenomena are still the subject of study in many areas of research and are characterized 

by considerable mathematical complexity. Many problems remain in fact only partially 

analytically solvable and are often, therefore, treated with mainly numerical approaches, 

typically supported by IT tools with enormous demands for computing power. Computational 

Fluid Dynamic (CFD) is a branch of fluid mechanics that uses numerical techniques performed 

with the help of supercomputers for the solution of complex problems concerning the motion 

of fluids and constitutes a calculation technique that is progressively acquiring the role of vital 

component in the design process of industrial products. The main reason why the development 

of CFD has proceeded at a slower pace compared to other CAE (Computer-Aided Engineering) 

tools is mainly due to the enormous complexity of the phenomena involved, which precludes 

the possibility of obtaining a description that is at the same time inexpensive and sufficiently 

complete. The availability of reliable computer systems with higher computational capabilities 

and the introduction of more intuitive graphical user interfaces (GUI) have contributed to the 

recent amplification of interest in this discipline, and CFD has become part of the common 

design practice in the industrial sector. Clearly, the investment costs related to the technology 

needed to support the onerous CFD calculations are far from negligible, but the overall expenses 

to be sustained generally remain lower than those associated with an advanced experimental 

system. In fact, in a fluid systems design context, CFD offers numerous other advantages over 

an experimental campaign-based approach, including: a substantial reduction in the time and 

cost of producing new designs, the ability to study systems for which a controlled experiment 

environment is impossible or extremely difficult to obtain (as in the case of large and complex 

systems), the ability to study systems at the limits of their normal applications (such as in safety 

and accident situations), the possibility of analyzing a problem and obtaining a result with a 

theoretically unlimited level of detail. A CFD code can perform a simulation of an enormously 

articulated scenario, can produce results at virtually no additional costs, and allows to perform 

parametric studies in a relatively economical way making this approach always preferable in 
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the execution of optimization studies. The feasibility of a solution with a numerical approach 

to a fluid dynamic or aerodynamic problem is justified by recent advances in technology and 

information technology in aspects related to the computing capabilities of modern computers. 

Moor’s Law is based on the observation that the number of transistors on an integrated circuit 

doubles approximately every two years; however, what impacts our lives is not the structure of 

these computers, but rather their capacity. Fig. 1.1 shows how the computational capacity of 

computers has increased exponentially through the years, doubling approximately every 18 

months. 

 

 

Figure 1.1: the computational capacity of the largest supercomputers in the world for any given year, 

based on the number of trillions (1012) of 64-bit floating-point operations (FLOPS) carried out per 

second [1]. 

 

In this chart, the growth of supercomputer power is measured in terms of the number of floating-

point operations carried out per second (FLOPS) by the largest supercomputer in any given 

year. FLOPS is a unit of measure for the numerical computing performance of a computer. 

FLOPS on an HPC-system (High Performance Computing system) can be calculated using this 

equation: 

 

 𝐹𝐿𝑂𝑃𝑆 = 𝑟𝑎𝑐𝑘𝑠 ∙
𝑛𝑜𝑑𝑒𝑠

𝑟𝑎𝑐𝑘
∙
𝑠𝑜𝑐𝑘𝑒𝑡𝑠

𝑛𝑜𝑑𝑒
∙
𝑐𝑜𝑟𝑒𝑠

𝑠𝑜𝑐𝑘𝑒𝑡
∙
𝑐𝑦𝑐𝑙𝑒𝑠

𝑠𝑒𝑐𝑜𝑛𝑑
∙
𝐹𝐿𝑂𝑃𝑠

𝑐𝑦𝑐𝑙𝑒
 (1.1) 
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Floating-point operations are typically used in fields such as scientific computational research. 

A diverse range of technological measures such as processing speed, product price and memory 

capacity have also been progressing exponentially. 

 

 

Figure 1.2: Historical cost of computer memory and storage, measured in US$ per megabyte [1]. 

 

A huge sector of the market in which CFD analysis techniques are used is the automotive 

industry. Vehicles are still mostly powered by fossil fuels, although their availability is 

increasingly limited. The use of fossil fuels also causes significant environmental damage such 

as pollution, ozone depletion and global warming. As part of the current renewable energy 

transition, which aims to the gradual reduction of the use and production of fossil fuels and to 

the consequent replacement with new renewable energy sources, the phase-out of fossil fuels 

has begun. Current efforts in fossil fuel phase-out involve replacing it with sustainable energy 

sources in sectors such as transport and heating [2]. The automotive industry is working to 

introduce electric vehicles to adapt to current and upcoming restrictions [3] and electric car 

sales reached a record 3 million in 2020, up 40% from 2019 [4]. Considering the thrust produced 

by international policies to reduce global pollutant emissions, with the aim of reaching net zero 

by 2050, it is expected that by the next ten years about 300 million electric vehicles will 

circulate on the roads, accounting for more than 60% of new car sales. 
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Figure 1.3: global monthly plug-in vehicles sales & year-on-year growth [5]. 

 

As a result of the enormous growth of the electric vehicle market around the world, a disruptive 

use of increasingly advanced technologies on board is also developing. Autonomous vehicles 

(AVs) are expected to be designed as ACES (Autonomous, Connected, Electrified, and Shared). 

For AVs to infiltrate the streets by the next few years, consumers note the need for faster-

charging infrastructure, battery durability, longer range, safe and regulated technology, and 

protection of personal and vehicle data. Therefore, because autonomous driving technology 

integrates well with electric motors, systems and equipment, electric vehicles are contributing 

very effectively to the widespread advancement and adoption of autonomous vehicles; the main 

reasons that justify this trend are attributable to the fact that, generally, buyers of this technology 

seek both characteristics in the same product, but also to the various advantages that the 

presence of an all-electric system can entail, including: the relative ease of integration and 

implementation of autonomous driving features (thanks to the reduced presence of moving parts 

of the vehicle), the extension of ranges (notoriously a critical aspect of electric vehicles) is 

facilitated by the presence of an efficient autonomous driving system, and finally the greater 

compatibility and flexibility that electronic control systems offer. Nevertheless, a big 

breakthrough in battery technology to offer plenty of range and autonomous functions is needed 

to achieve pure electric AVs. Additionally, other factors that would allow for and support AVs 

are still in the gray area: the regulatory environment remains murky, liability guidelines are 

undetermined, social acceptance is still questionable, road and highway infrastructures for 

many countries are not ready, to name a few. Most consumers will prefer to buy vehicles that 

employ technology to assist drivers rather than completely autonomous cars for at least the next 

decade. Examples include automated emergency braking and assistive parking. The willingness 

of consumers to pay for features based on assistive technologies like radar and computer vision 

will determine their deployment, and most are not willing to pay much more than they currently 

do. However, as volume increases, costs will be reduced. If automakers want to preserve their 
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high safety ratings, they'll have to install more advanced safety measures. Other functions, such 

as advanced cruise control, lane-departure warnings and cross traffic alerts, will rely on the 

same fundamental hardware and may be enabled through software upgrades. 

 

 

Figure 1.4: Volvo side-view mirror warning light indicating the presence of another car on the 

changing lane. 

 

Since the 2010s, multiple automatic technology features have been developed to assist the 

driver. Blind spots while utilizing side-view mirrors became more problematic on passenger 

vehicles as wider pillars became more common due to safety legislation relevant to rollover 

risks. Already in 2007 Volvo developed its Blind Spot Information System and included it on 

its S80 sedan, which created a visible alert for the driver when changing lanes occupied by other 

cars. Ford was Volvo's parent company at the time and started using the same system for all of 

its brands. Mazda used a similar system in 2008 for its Mazda CX-9 model and in 2013 started 

making it more available through its range, and other companies followed suit. Blind spot 

monitoring systems are now also used for rear-cross-traffic safety systems. 

It is evident that all driver assistance technologies mounted on board a vehicle maintain an 

effective and reliable operation over time only if their integrity is preserved and if the 

environmental conditions in which they operate are controlled. This is especially true when 

considering the efficiency of the visibility sensors mounted outside the vehicle casing, as these 

are openly exposed to the surrounding weather conditions [6]. 

In autonomous driving, cameras are an important part of the sensor package. Surround-view 

cameras are directly exposed to the outside environment and are vulnerable to get soiled. When 

compared to other sensors, cameras have a substantially higher rate of performance 
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deterioration due to soiling. As a result, accurately detecting soiling on cameras is critical, 

especially if taken into consideration the increasing number of circulating AVs. 

This work provides an advanced numerical method applied to the automotive sector for finding 

optimal design solutions. The procedure that will be illustrated in the following chapters aims 

to automate the geometry shape optimization process of road vehicles, evaluating the 

aerodynamic behavior of a large number of variants of car body shape (or details of it) with the 

use of high-fidelity CFD models. The shape variants studied were generated using the 

functionality of the commercial morpher RBF Morph implemented within the modular 

architecture of ANSYS Workbench through an add-on logic with ACT (Application 

Customization Tool) technology. The RBF Morph ACT extension manages the task of updating 

the calculation meshes built on the studied geometries using an ANSYS Mechanical integrated 

interface. Each shape variant is then processed by C++ code, which contains calls to the RBF 

Morph function library and whose output is the new coordinates of the morphed geometry. 

These coordinates are then transferred to the STAR-CCM+ commercial solver through UDF 

(User-Defined Functions) contained in a dynamic linked library. After updating the coordinates 

of the calculation mesh, the solver is ready to launch the CFD simulation on the morphed 

geometry. All these steps are contained inside a routine described by a single batch file in MS-

DOS, able to automate the entire parametric analysis through a series of commands to be 

executed by the command-line interpreter in a Microsoft Windows environment. The 

implemented workflow was tested on two, mostly demonstrative, technical applications. The 

first application consists in the aerodynamic optimization of the publicly available ASMO 

(Aerodynamics Studien Model) idealized car body shape, aimed at the reduction of the drag 

coefficient (CD). The second application, in collaboration with Volvo Cars and RBF Morph, 

consists of a design exploration of a detail located around the lens of a camera placed below the 

side-view mirror of a Volvo vehicle. The analysis is meant to minimizing the fluid film layer 

thickness deposited on the camera in adverse weather and soiling conditions. 
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2. FUNDAMENTALS OF FLUID 

MECHANICS 
 

 

Fluid mechanics is the branch of physics that deals with studying the properties of fluids. 

One can distinguish between fluid statics, which is the study of fluids at rest, and fluid 

dynamics, which is the study of fluids in the state of motion. The solution to a fluid dynamic 

problem generally involves the calculation of various properties of the fluid such as velocity, 

pressure, density, and temperature expressed as functions of space and time. Fluid mechanics, 

especially fluid dynamics, is a particularly active and mathematically complex field of research. 

Many problems are only partially solved and, more frequently, are addressed with numerical 

methods, typically with the use of computer resources. Computational fluid dynamics (CFD) is 

a modern discipline aimed precisely at these aspects, using a numerical approach for the 

solution of complex fluid dynamic problems. 

When analyzing phenomena involving fluid dynamics, the focus is mainly on what happens at 

macroscopic scales rather than microscopic ones. In addition, the continuity hypothesis is 

assumed for the fluid, establishing that the properties of the flow are defined at each point of 

space. With this assumption the behavior of the flow can be categorized as Newtonian and non-

Newtonian: a Newtonian fluid is characterized by exhibiting, by means of the dynamic viscosity 

coefficient of the fluid, a direct proportionality between the strain stress exerted by the fluid 

and the velocity gradient perpendicular to the direction of the deformation. 

 

 𝜏 = 𝜇
𝑑�⃗⃗�

𝑑𝑦
 (2.1) 

  

In contrast, for a non-Newtonian fluid the previous relation is no longer valid since the 

proportionality between the two terms is not linear. Other fluid classification criteria distinguish 

between single-phase and multiphase flow, stationary and transient, ideal (inviscid) or real 

(viscous), compressible or incompressible, laminar or turbulent. 

Mathematically, flows can be classified according to the nature of the differential equations that 

describe them. Fluids, as will be explored later, are governed by the Navier-Stokes equations, 

which are highly nonlinear second-order partial differential equations. Nonlinearity, and the 

coupling between variables, is what makes these equations difficult or impossible to solve and 

is the main factor contributing to the turbulent phenomena that these equations describe. 
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1.1. GOVERNING EQUATIONS 
 

 

The fundamental equations governing computational fluid dynamics are based on the law 

of conservation of mass, through the continuity equation, on the law of conservation of 

momentum, historically represented by the Navier-Stokes equations, and on the law of 

conservation of energy.  More recently, in the scientific community the name of Navier-Stokes 

equations is used  to refer to the set of conservation laws of mass, momentum and energy. 

Before proceeding with the derivation of these conservation laws, it is necessary to present and 

derive the Reynolds Transport Theorem.  

 

 

2.1.1 REYNOLDS TRANSPORT THEOREM 
 

The Reynolds Transport Theorem allows to study the variations over time of a physical 

quantity associated with a domain, and therefore to evaluate quantities related to a material 

volume V(t) known those relating to an initial control volume V0 = V(t=0). Consider an extensive 

magnitude B, such that:  

 

 𝐵 =  ∫ 𝜌𝑏𝑑𝑉

𝑉

 (2.2) 

 

 

Figure 2.1: representation of control volume V0 and material volume V(t). 

 

After a time t+∆t, the material volume V(t) will have moved by a certain amount, and the 

variation over time of the extensive magnitude B can be expressed as: 
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𝑑𝐵

𝑑𝑡
=
𝑑

𝑑𝑡
∫ 𝜌𝑏 𝑑𝑉

𝑉(𝑡)

= lim
∆𝑡→0

∫ 𝜌𝑏 𝑑𝑉 − ∫ 𝜌𝑏 𝑑𝑉
𝑉(𝑡)𝑉(𝑡+∆𝑡)

∆𝑡
 (2.3) 

 

According with fig. 2.1, eq. (2.3) can also be rewritten as:  

 

 

𝑑𝐵

𝑑𝑡

= lim
∆𝑡→0

∫ (𝜌𝑏)𝑡+∆𝑡 𝑑𝑉 + ∫ (𝜌𝑏)𝑡+∆𝑡 𝑑𝑉𝑉2
− ∫ (𝜌𝑏)𝑡 𝑑𝑉 − ∫ (𝜌𝑏)𝑡 𝑑𝑉𝑉1𝑉𝑉

∆𝑡
 

(2.4) 

 

and since for t→0, V(t)→V0:  

 

 lim
∆𝑡→0

∫ (𝜌𝑏)𝑡+∆𝑡 𝑑𝑉 − ∫ (𝜌𝑏)𝑡 𝑑𝑉𝑉𝑉

∆𝑡
= ∫

𝑑(𝜌𝑏)

𝑑𝑡
𝑑𝑉

𝑉0

 (2.5) 

 

Considering that the two infinitesimal volumes dV1 and dV2 can be defined as shown in eq. 

(2.6), then the previous equation becomes (eq. (2.7)): 

 

 {
𝑑𝑉2 = +�⃗⃗� ∙ �⃗⃗� ∆𝑡 𝑑𝑆

𝑑𝑉1 = −�⃗⃗� ∙ �⃗⃗� ∆𝑡 𝑑𝑆
 (2.6) 

 

 

lim
∆𝑡→0

∫ (𝜌𝑏)𝑡+∆𝑡 𝑑𝑉𝑉2
− ∫ (𝜌𝑏)𝑡 𝑑𝑉𝑉1

∆𝑡

= lim
∆𝑡→0

(∫(𝜌𝑏)𝑡+∆𝑡
𝑆2

�⃗⃗� ∙ �⃗⃗� 𝑑𝑆 + ∫(𝜌𝑏)𝑡
𝑆1

�⃗⃗� ∙ �⃗⃗� 𝑑𝑆) = ∫ 𝜌𝑏

𝑆0

�⃗⃗�

∙ �⃗⃗� 𝑑𝑆 

(2.7) 

 

It is then obtained by replacing the eq. (2.5) and (2.7) in eq. (2.4): 

 

 
𝑑𝐵

𝑑𝑡
= ∫

𝑑(𝜌𝑏)

𝑑𝑡
𝑑𝑉

𝑉0

+ ∫ 𝜌𝑏�⃗⃗� ∙ �⃗⃗� 𝑑𝑆

𝑆0

 (2.8) 
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Applying Gauss's Theorem to the second right term of the previous equation ultimately leads 

to the integral form of Reynolds Transport Theorem, represented by eq. (2.9). 

 

 
𝑑𝐵

𝑑𝑡
= ∫

𝑑(𝜌𝑏)

𝑑𝑡
𝑑𝑉

𝑉0

+ ∫ ∇⃗⃗⃗ ∙ (𝜌𝑏�⃗⃗�) 𝑑𝑉

𝑉0

 (2.9) 

 

It is worth noting that the velocity u that appears in the eq. (2.9) represents the absolute velocity 

of the fluid in the case of a control volume V0 that holds a fixed position in space. In the case 

of a moving control volume with a certain speed v, the correct speed to use would be the relative 

speed ur = u – v. 

 

 

2.1.2 CONSERVATION OF MASS 
 

Consider the following three-dimensional fluid element of dimensions δx, δy, δz: 

 

 

Figure 2.2: fluid reference element for mass balance. 

 

The conservation of mass will be given by the equality between the rate of accumulation of the 

same within the element and the net balance of the incoming and outgoing flows through the 

contour surfaces. Using the notation shown in the figure and assuming negative the outgoing 

flows and positive the incoming ones, it is possible, with simple steps, to get to the equation: 
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𝜕𝜌

𝜕𝑡
= − [

𝜕(𝜌𝑢)

𝜕𝑥
+
𝜕(𝜌𝑣)

𝜕𝑦
+
𝜕(𝜌𝑤)

𝜕𝑧
] (2.10) 

 

In vectorial form, the continuity equation for a non-stationary flow can be written as: 

 

 
𝜕𝜌

𝜕𝑡
+ ∇⃗⃗⃗ ∙ (𝜌�⃗⃗�) = 0 (2.11) 

 

where ρ is the density of the fluid and �⃗⃗� the velocity vector. In the case of a sufficiently low 

Mach number, generally less than the value of M = 0.3, one can reasonably consider the flow 

as incompressible and thus simplify the previous expression as follows: 

 

∇⃗⃗⃗ ∙ �⃗⃗� = 0     (2.12) 

 

An alternative procedure for deriving the continuity equation uses Reynolds Transport Theorem 

(eq. (2.9)), establishing that: 

 

 𝐵 = 𝑀 = ∫ 𝑏 𝑑𝑉

𝑉(𝑡)

 (2.13) 

 

where it is used that b = 1. Then, substituting the previous equation in eq. (2.8), the following 

is obtained: 

 

 
𝑑𝑀

𝑑𝑡
= ∫

𝑑𝜌

𝑑𝑡
𝑑𝑉

𝑉0

+ ∫ ∇⃗⃗⃗ ∙ 𝜌�⃗⃗� ∙ �⃗⃗� 𝑑𝑆

𝑆0

= 0 (2.14) 

 

Which represents the integral form of the continuity equation.  

Applying the Divergence Theorem to the previous expression: 

 

 
𝑑𝑀

𝑑𝑡
= ∫ [

𝑑𝜌

𝑑𝑡
+ ∇⃗⃗⃗ ∙ (𝜌�⃗⃗�)] 𝑑𝑉

𝑉0

= 0 (2.15) 
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Finally, since the integral is valid for an arbitrary volume V0, the following expression is 

obtained, which instead constitutes the differential form of the continuity equation. 

 

 
𝜕𝜌

𝜕𝑡
+ ∇⃗⃗⃗ ∙ (𝜌�⃗⃗�) = 0 (2.16) 

 

The equation just obtained, as is evident, coincides with the eq. (2.11). 

 

 

2.1.3 CONSERVATION OF MOMENTUM 
 

Newton's second law states that the change in momentum of a fluid particle must equal the 

summation of the forces acting on the particle, namely: 

 

 
𝑑�⃗⃗�

𝑑𝑡
= �⃗� = �⃗�𝑆 + �⃗�𝑉 (2.17) 

 

where with �⃗�𝑆 and �⃗�𝑉 are indicated respectively the surface forces and the volume forces, while 

with �⃗⃗� is indicated the momentum of a fluid particle, defined as follows: 

 

 �⃗⃗� = ∫ 𝜌�⃗⃗�

𝑉0

𝑑𝑉 (2.18) 

 

Surface forces can be written by distinguishing between forces due to pressure P alone, and all 

other forces (including friction forces). 

 

 �⃗�𝑠 = − ∫ 𝑃�⃗⃗�

𝑆0

𝑑𝑆 + �⃗�𝑆
′ (2.19) 

 

Using Reynolds Transport Theorem (eq. (2.9)), the change in momentum can be rewritten in 

integral form. 
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𝑑�⃗⃗�

𝑑𝑡
= ∫

𝑑(𝜌�⃗⃗�)

𝑑𝑡
𝑑𝑉

𝑉0

+ ∫ 𝜌�⃗⃗��⃗⃗� ∙ �⃗⃗� 𝑑𝑆

𝑆0

 (2.20) 

 

By entering the eq. (2.17) within the one just written: 

 

 ∫
𝑑(𝜌�⃗⃗�)

𝑑𝑡
𝑑𝑉

𝑉0

+ ∫ 𝜌�⃗⃗��⃗⃗� ∙ �⃗⃗� 𝑑𝑆

𝑆0

+ ∫ 𝑃�⃗⃗�

𝑆0

𝑑𝑆 = �⃗�𝑆
′ + �⃗�𝑉 (2.21) 

 

Let: 

 

 

{
  
 

  
 
�⃗�𝑆 = ∫ �̃� ∙ �⃗⃗�

𝑆0

𝑑𝑆

�⃗�𝑉 = ∫ 𝜌𝑓𝑑𝑉

𝑉0

 (2.22) 

 

where is indicated by �̃� the stress tensor and 𝑓 the density of volume forces, such as the force 

of gravity and electromagnetic forces. In the case of a moving fluid, the stress tensor, consisting 

of an isotropic part and a deviatory part, is shown in eq. (2.23). 

 

 �̃� = −𝑃𝐼 + �̃� (2.23) 

 

Substituting these expressions for the surface and volume forces in the equation describing 

Reynolds Transport Theorem leads to  the integral formulation of the momentum balance. 

 

 ∫
𝑑(𝜌�⃗⃗�)

𝑑𝑡
𝑑𝑉

𝑉0

+ ∫ 𝜌�⃗⃗��⃗⃗� ∙ �⃗⃗� 𝑑𝑆

𝑆0

= − ∫ 𝑃𝐼 ∙ �⃗⃗�

𝑆0

𝑑𝑆 + ∫ �̃� ∙ �⃗⃗�

𝑆0

𝑑𝑆 + ∫ 𝜌𝑓 𝑑𝑉

𝑉0

 (2.24) 

 

 

Then, by applying the Divergence Theorem: 
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 ∫ [
𝑑(𝜌�⃗⃗�)

𝑑𝑡
+ ∇⃗⃗⃗ ∙ (𝜌�⃗⃗��⃗⃗�)] 𝑑𝑉

𝑉0

= ∫(−∇⃗⃗⃗𝑃 + ∇⃗⃗⃗ ∙ �̃� + 𝜌𝑓) 𝑑𝑉

𝑉0

 (2.25) 

 

Under the hypothesis of isotropy and remembering that, without losing generality, the choice 

of the control volume V0 is arbitrary, the equation in differential form of Navier-Stokes 

describing the conservation of the momentum of the fluid is as follows: 

 

 
𝜕𝜌�⃗⃗�

𝜕𝑡
+ ∇⃗⃗⃗ ∙ (𝜌�⃗⃗��⃗⃗�) = −∇⃗⃗⃗𝑃 + ∇⃗⃗⃗ ∙ �̃� + 𝜌𝑓 (2.26) 

 

while the expressions for the conservation of momentum along x and along y, derived from eq. 

(2.26), are reported respectively in the eq. (2.27) and (2.28). 

 

 
𝜕𝜌𝑢

𝜕𝑡
+ ∇⃗⃗⃗ ∙ (𝜌𝑢�⃗⃗�) = −

𝜕𝑃

𝜕𝑥
+
𝜕𝜏𝑥𝑥
𝜕𝑥

+
𝜕𝜏𝑦𝑥

𝜕𝑦
+
𝜕𝜏𝑧𝑥
𝜕𝑧

+ 𝜌𝑓𝑥 (2.27) 

 

 
𝜕𝜌𝑣

𝜕𝑡
+ ∇⃗⃗⃗ ∙ (𝜌𝑣�⃗⃗�) = −

𝜕𝑃

𝜕𝑦
+
𝜕𝜏𝑥𝑦

𝜕𝑥
+
𝜕𝜏𝑦𝑦

𝜕𝑦
+
𝜕𝜏𝑧𝑦

𝜕𝑧
+ 𝜌𝑓𝑦 (2.28) 

 

where have been denoted with u and v the velocity components respectively along x and along 

y directions, with P the pressure, with τ the components of the tensor of the shear stresses and 

with f the volume forces. The Navier-Stokes equations allow to describe and model a very wide 

range of phenomena concerning fluid dynamics. 

To solve the eq. (2.26), (2.27) and (2.28), two fundamental difficulties must be overcome: 

• the convective terms present in the eq. (2.27) and (2.28) contain non-linear quantities 

that must be treated iteratively with a guessed initial velocity 

• the pressure field is unknown (the variables are coupled) and needs to be solved 

iteratively as well. 

A solution to the problem consists in the use of a staggered mesh: some variables are evaluated 

at the center of the cell (pressure) and other variables are evaluated on the faces of the control 

volume (speed components). The staggering of the velocity components is obtained by 

translating the coordinates of the computational nodes of the components u and v respectively 
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along the x axis and along the y axis, with reference to the scalar pressure nodes P, as shown in 

fig. 2.3. 

 

 

Figure 2.3: displaying the control volume of a staggered grid. 

 
Through the staggering of the calculation grid described in fig. 2.3 the problem-solving strategy 

through iterative approaches becomes viable. To undertake the calculation it is first necessary 

to proceed with the discretization of the equations of conservation of momentum using the 

Finite Volume Method (FVM) that will be presented in the following chapter. 

 

 

2.1.4 CONSERVATION OF ENERGY 
 

The principle of conservation of energy derives directly from the application of the first law 

of thermodynamics and establishes that the temporal variation of the internal energy of a fluid 

particle is equivalent to the sum of the thermal power and mechanical power exchanged from 

the outside with the particle. 

 

 
Figure 2.4: representation of the sign conventions on heat and work exchanged by the system. 
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𝑑𝐸

𝑑𝑡
= �̇� + �̇� (2.29) 

 

Through Reynolds Transport Theorem, introducing the intensive quantity ε, one can rewrite the 

eq. (2.29) in integral form as follows: 

 

 
𝑑𝐸

𝑑𝑡
=
𝑑

𝑑𝑡
∫ 𝜌𝜀 𝑑𝑉

𝑉

= ∫
𝑑(𝜌𝜀)

𝑑𝑡
𝑑𝑉

𝑉0

+ ∫ 𝜌𝜀�⃗⃗� ∙ �⃗⃗� 𝑑𝑆

𝑆0

 (2.30) 

 

Distinguishing between surface contributions and volumetric contributions, it can be written 

that: 

 

 �̇� = �̇�𝑆 + �̇�𝑉 (2.31) 

 

 �̇� = �̇�𝑆 + �̇�𝑉 (2.32) 

 

where: 

 

 

{
  
 

  
 
�̇�𝑆 = ∫(�̃� ∙ �⃗⃗�)

𝑆0

∙ �⃗⃗� 𝑑𝑆 = ∫[(−𝑃𝐼 + �̃�) ∙ �⃗⃗�]

𝑆0

∙ �⃗⃗� 𝑑𝑆

�̇�𝑉 = ∫ 𝜌𝑓 ∙ �⃗⃗� 𝑑𝑉

𝑉0

 (2.33) 

 

 

{
  
 

  
 
�̇�𝑆 = − ∫ �⃗⃗⃗� ∙ �⃗⃗�

𝑆0

𝑑𝑆 = ∫ 𝜆∇⃗⃗⃗𝑇 ∙ �⃗⃗�

𝑆0

𝑑𝑆

�̇�𝑉 = ∫ 𝜌𝑞 ̇ 𝑑𝑉

𝑉0

 (2.34) 

 

Having denoted by �̇� the heat flux per unit mass and with �⃗⃗⃗� the heat exchange flow per unit 

area that enters the system through the outer surface, in accordance with the Fourier 

formulation. 
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 �⃗⃗⃗� = −𝜆∇⃗⃗⃗𝑇 (2.35) 

 

Then the first law of thermodynamics reported in eq. (2.29) can be rewritten as: 

 

 
𝑑𝐸

𝑑𝑡
=
𝑑

𝑑𝑡
∫ 𝜌𝜀 𝑑𝑉

𝑉

= �̇�𝑆 + �̇�𝑉 + �̇�𝑆 + �̇�𝑉 (2.36) 

 

And substituting in this expression the eq. (2.30), (2.33) and (2.34), the equation of conservation 

of energy in integral form is ultimately obtained. 

 

 

∫
𝑑(𝜌𝜀)

𝑑𝑡
𝑑𝑉

𝑉0

+ ∫ 𝜌𝜀�⃗⃗� ∙ �⃗⃗� 𝑑𝑆

𝑆0

= − ∫ 𝑃(𝐼 ∙ �⃗⃗�) ∙ �⃗⃗�

𝑆0

𝑑𝑆 + ∫(�̃� ∙ �⃗⃗�) ∙ �⃗⃗�

𝑆0

𝑑𝑆 + ∫ 𝜌𝑓 ∙ �⃗⃗� 𝑑𝑉

𝑉0

+ ∫ 𝜆∇⃗⃗⃗𝑇 ∙ �⃗⃗�

𝑆0

𝑑𝑆 + ∫ 𝜌𝑞 ̇ 𝑑𝑉

𝑉0

 

(2.37) 

 

The expression just obtained states that the variation in the internal energy of a fluid particle 

(left member of the equation) depends on the sum of (right member of the equation, in order 

from left to right): normal actions, tangential actions, volume forces, surface heat power 

exchanges and volumetric thermal power exchanges. With the application of the Divergence 

Theorem, surface integrals are transformed into volume integrals. 

 

∫ [
𝑑(𝜌𝜀)

𝑑𝑡
+ ∇⃗⃗⃗ ∙ (𝜌𝜀�⃗⃗�)] 𝑑𝑉

𝑉0

= ∫[−∇⃗⃗⃗ ∙ (𝑃�⃗⃗�) + ∇⃗⃗⃗ ∙ (�̃��⃗⃗�) + 𝜌𝑓 ∙ �⃗⃗� + ∇⃗⃗⃗ ∙ (𝜆∇⃗⃗⃗𝑇) + 𝜌�̇�] 𝑑𝑉

𝑉0

 

(2.38) 

 

Finally, remembering that the choice of the control volume V0 is totally arbitrary, it is possible 

to arrive at the differential form of the energy conservation equation. 
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𝑑(𝜌𝜀)

𝑑𝑡
+ ∇⃗⃗⃗ ∙ (𝜌𝜀�⃗⃗�) = −∇⃗⃗⃗ ∙ (𝑃�⃗⃗�) + ∇⃗⃗⃗ ∙ (�̃��⃗⃗�) + 𝜌𝑓 ∙ �⃗⃗� + ∇⃗⃗⃗ ∙ (𝜆∇⃗⃗⃗𝑇) + 𝜌�̇� (2.39) 

 

 

2.1.5 BERNOULLI’S PRINCIPLE 
 

To arrive at the formulation of Bernoulli's Principle it is worth introducing the concept of 

material derivative. The material derivative, or substantial derivative, is a differential operator 

that describes the variation of a certain physical quantity of a material element subject to a 

macroscopic velocity field that changes in space and time. Below is the definition of a material 

derivative written for a generic function φ, subject to a velocity field �⃗⃗�. 

 

 
𝐷

𝐷𝑡
𝜑 =

𝜕

𝜕𝑡
𝜑 + �⃗⃗� ∙ ∇φ (2.40) 

 

With this concept it is possible to rewrite the equation of conservation of momentum (eq. (2.26)) 

in a more compact manner. 

 

 𝜌
𝐷�⃗⃗�

𝐷𝑡
= −∇⃗⃗⃗𝑃 + ∇⃗⃗⃗ ∙ �̃� + 𝜌𝑓 (2.41) 

 

At this point, for �̃� (deviatory part of the stress tensor �̃�, defined in eq. (2.23)) the following 

assumptions are made: 

• depends only on the instantaneous value of �⃗⃗� (eq. (2.1) and not from its history 

• it does not depend on the orientation of the fluid (the fluid is isotropic). 

With these hypotheses it is found that: 

 

 �̃� = −
2

3
𝜇(∇⃗⃗⃗ ∙ �⃗⃗�)𝐼 + 2𝜇𝐸 (2.42) 

 

where with E has been denoted the modulus of elasticity of the fluid. Substituting this 

expression for �̃� within the eq. (2.41) it is obtained, following simple algebraic operations, in a 

more general form of the Navier-Stokes equation, valid for compressible flows. 
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 𝜌
𝐷�⃗⃗�

𝐷𝑡
= −∇⃗⃗⃗𝑃 +

1

3
𝜇∇⃗⃗⃗ ∙ (∇⃗⃗⃗ ∙ �⃗⃗�) + 𝜇∇2�⃗⃗� + 𝜌𝑓 (2.43) 

 

Under the hypothesis of stationary flows (
𝜕

𝜕𝑡
= 0) and of inviscid fluid (μ = 0) free of 

dissipations: 

 

 �⃗⃗� ∙ ∇⃗⃗⃗�⃗⃗� = −∇⃗⃗⃗𝑃 + 𝜌𝑓 (2.44) 

 

The integration of the expression just obtained allows to formulate the Bernoulli’s Principle, 

valid precisely for stationary flows characterized by negligible viscous effects. 

 

 
𝑢2

2
+ 𝑔𝑧 +

𝑃

𝜌
= 𝑐𝑜𝑠𝑡 (2.45) 
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2.2. TURBULENT FLOW 
 

 

A turbulent regime in fluid dynamics is a type of fluid motion in which the viscous forces 

are insufficient to resist the forces of inertia: the resulting fluid particles move in a chaotic way, 

rather than following orderly trajectories as in the laminar regime. This causes the production 

of unstable “vortices” of various sizes that interact with each other, as well as chaotic 

fluctuations in the velocity and pressure fields in general. The main difficulty in the study of 

turbulence is the simultaneous presence of a large number of swirling structures of different 

characteristic sizes. Moreover, all these characteristic structures interact with each other 

because of the nonlinear structure of the Navier-Stokes equations. All these peculiarities make 

the classic analytical approach difficult to apply. In 1922 Lewis F. Richardson introduced the 

concept of energy cascade [7], while in 1941 the first statistical theory of turbulence, elaborated 

by the Soviet mathematician and physicist Andrei N. Kolmogorov, was formulated. In recent 

decades, the study of turbulence has advanced significantly, both in terms of the technologies 

that can be used in experimental studies and, more importantly, in terms of the introduction of 

computer simulations, which allow researchers to study turbulent flows quantitatively and in 

detail through numerical integration of the Navier-Stokes equations. 

It is very difficult to give a precise definition of turbulence. What can be done, however, is to 

list and briefly describe some of the main characteristics of a turbulent flow: 

• Irregularity: turbulent flows are always highly irregular; thus, turbulence problems are 

normally treated statistically rather than deterministically. 

• Diffusivity: another significant aspect of all turbulent flows is their diffusivity, which 

produces rapid mixing and enhanced rates of momentum, heat, and mass transfer [8]. 

Turbulent diffusion is usually parameterized by a turbulent diffusion coefficient. This 

coefficient of turbulent diffusion is defined in a phenomenological sense, by analogy 

with molecular diffusivities. 

• Dissipation: viscous shear stresses perform deformation work which increases the 

internal energy of the fluid at the expense of kinetic energy of the turbulence. 

Turbulence needs a continuous supply of energy to make up for these viscous losses, 

otherwise it decays rapidly. 

• Rotationality and three-dimensionality: turbulent flows have non-zero vorticity and are 

characterized by a strong three-dimensional vortex generation mechanism known as 
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vortex stretching. Vortex stretching is the core mechanism on which the turbulence 

energy cascade relies to establish and maintain identifiable structure function. 

• Large Reynolds number: turbulence often originates as an instability of laminar flow if 

the Reynolds number becomes too large. For practical purposes, if the Reynolds 

Number is less than 2000, the flow is laminar. The accepted transition Reynolds number 

for flow in a circular pipe is Re = 2300. At Reynolds numbers between about 2000 and 

4000 the flow is unstable as a result of the onset of turbulence. These flows are 

sometimes referred to as transitional flows. Lastly, if the Reynolds number is greater 

than 3500, the flow is turbulent. 

 

 

Figure 2.5: representation of the transition between laminar and turbulent flow. 

 

• Kolmogorov length scales: the Kolmogorov scale is the smallest spatial scale where the 

kinetic energy coming from the upper scales (by the non-linear inertial term) is 

dissipated into thermal energy by viscosity. On such scales the flow is typically 

homogeneous and isotropic [9]. 

• Taylor microscales: the intermediate scales between the largest integral scale and the 

smaller Kolmogorov scale and make up the inertial interval. Taylor microscales do not 

correspond to dissipative phenomena, but to the transmission of energy from the largest 

to the smallest scale without dissipation. 

In many applications, the efficiency of turbulence in moving and mixing fluids is critical. When 

separate fluid streams are brought together to mix, it's usually best if the mixing happens as 
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quickly as possible. Turbulence is also useful for mixing the momentum of the fluid. As a result, 

the wall shear stress (hence the drag) on aircraft wings and ship hulls is substantially higher 

than it would be if the flow were laminar. Similarly, compared to laminar flow, in turbulent 

flows heat and mass transfer rates at solid-fluid and liquid-gas interfaces are significantly 

higher. 

 

 

2.2.1 TURBULENCE MODELING 
 

As discussed in the previous chapter, the mechanism of turbulence in fluids is an extremely 

complex phenomenon to solve numerically and, in most cases, impossible to solve analytically. 

For this reason there is an interest, to derive a solution for flows with a high Reynolds number, 

in the implementation of calculation models able to describe in a sufficiently accurate way the 

turbulent phenomena that occur at large and small scales of motion. In the study of turbulent 

flows the ultimate objective is to obtain a tractable quantitative theory or model that can be used 

to calculate quantities of interests and practical relevance. Since there are no prospects of a 

simple analytic theory, the hope is to use the ever-increasing power of digital computers to 

achieve the objective of calculating the relevant properties of turbulent flows. Remembering 

that the Reynolds number is defined as: 

 

 𝑅𝑒 =
𝑢𝐿

𝜈
=
𝜌𝑢𝐿

𝜇
 (2.46) 

 

It appears clear that it represents the ratio between inertial forces and viscous forces within a 

fluid. Therefore it is evident that the phenomenon of the energy cascade, which involves the 

creation of progressively smaller swirling structures at the lower scales of which the dissipation 

of energy takes place, occurs only in the presence of significant inertial terms (also called non-

linear terms). The solution of a flow that generates small swirling spatial structures requires the 

adoption of grids that are sufficiently dense to adequately contain the variation in the quantity 

concerned. As a result, as the flow Reynolds number increases, the need to generate 

increasingly dense calculation grids (namely with progressively smaller spatial steps) increases 

and, ultimately, the computational cost of the calculation to be performed greatly increases. By 

calling ℓ0 the characteristic length of the body around or inside which there is flow and η the 

Kolmogorov lengthscale, it can be shown that: 
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𝜂

ℓ0
∝ 𝑅𝑒−

3
4 (2.47) 

 

This means that for each length ℓ0 the number of compute nodes needed to resolve the smaller 

scales η is proportional to 𝑅𝑒3 4⁄ , therefore, for a cube of volume ℓ0
3 are needed about 𝑅𝑒9 4⁄  

nodes.  

Similarly, called τ0 the macroscopic timescale and τη the Kolmogorov timescale, it is true that: 

 

 
𝜏𝜂

𝜏0
∝ 𝑅𝑒−

1
2 (2.48) 

 

That is, the number of time-steps (the largest time-step cannot be greater than τη to effectively 

capture the dynamics of the scales of dimension η) is proportional to 𝑅𝑒1 2⁄ . In conclusion, it 

emerges that the number of operations to be performed for the numerical solution of the Navier-

Stokes equations is of the order of 𝑅𝑒11 4⁄  ~ 𝑅𝑒3. Ultimately, it can be deduced that a direct 

numerical simulation (DNS) would require unsustainable calculation times. As things stand, 

the direct simulation of a flow at a Reynolds number of a few thousand already constitutes a 

challenge for modern supercomputers even if it is limited to a simplified geometry. Even taking 

Moore's law into account, if we then add the geometric complexities of industrial applications, 

and the inhomogeneities of the flow, we conclude that the direct simulation of turbulence, i.e. 

the solution of the Navier–Stokes equations without any model, does not constitute a possibility 

of investigation of practical problems not even in the coming decades. 

To obtain a solution of the problem in acceptable calculation times it is common practice to 

establish a dimension of the vortex structures below which to proceed with a modeling of the 

phenomenon rather than with the direct numerical solution. The difference between the various 

calculation techniques consists precisely in the position of the "cut" in the cascade or, in other 

words, in which scales of motion one is willing to calculate and which to model. 

Historically, many models have been proposed and many are currently in use. It is important to 

appreciate that there is a broad range of turbulent flows and a broad range of questions to be 

addressed. Consequently, it is useful and appropriate to have a broad range of models that vary 

in complexity, accuracy, and other attributes. The principal criteria that can be used to address 

different models are the: level of description (a higher level of description can provide a more 

complete characterization of the turbulence, leading to models of greater accuracy and wider 

applicability), completeness (a model is deemed complete if its constituent equations are free 
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from flow-dependent specifications), cost and ease of use (numerical methods are required to 

solve the model equations), range of applicability (limited by characteristics of flows and 

computational cost) and accuracy (the accuracy of a model can be determined by comparing 

model calculations with experimental measurements). 

The suitability of a particular model for a particular turbulent-flow problem depends on a 

weighted combination of these criteria and the relative weighting of the importance of the 

various criteria depends significantly on the problem. Consequently, there is no one “best” 

model, but rather there is a range of models that can usefully be applied to the broad range of 

turbulent-flow problems. 

 

 

Figure 2.6: comparison of predictive methods, comparison of DNS, LES, and RANS models [10]. 

 

The objective of turbulence modeling is to develop equations that will predict the time-averaged 

velocity, pressure, and temperature fields without calculating the complete turbulent flow 

pattern as a function of time. Turbulence models can be classified according to their computing 

cost, which is related to the number of scales modeled versus resolved (the more turbulent scales 

that are resolved, the finer the resolution of the simulation, and therefore the higher the 

computational cost). The computational cost is indeed very low if the majority or all of the 

turbulent scales are not modeled, but the accuracy suffers as a result. 

However, from an engineering point of view, there is more interest in knowing the field of large 

scales, i.e. those scales that determine pressure fields and viscous stresses in the vicinity of the 

body. The oldest approach to turbulence modeling is the Reynolds–averaged Navier–Stokes 

(RANS) equations. The governing equations are solved as an ensemble, which adds new 

apparent stresses known as Reynolds stresses. This introduces a second order tensor of 
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unknowns, for which different models can provide various forms of closure. Most common 

approaches of RANS involve using an algebraic equation for the Reynolds stresses which 

include estimating the turbulent viscosity and, depending on the level of sophistication of the 

model, solving transport equations for determining the turbulent kinetic energy and dissipation 

[11]. The models available in this approach are often referred to by the number of transport 

equations associated with the method. The advantages of a RANS approach lie mainly in the 

simplicity of implementation and inexpensiveness of computation. The main disadvantages are 

attributable to the fact that an approach of this type requires energy production and dissipation 

to be equal instantly and locally, when in reality they are only statistically and globally 

equivalent; moreover, it is conceptually wrong to assume that everything that falls within the 

fluctuating contribution is attributable to turbulence. 

Large eddy simulation (LES) is a technique in which the smallest scales of the flow are removed 

through a filtering operation, and their effect modeled using sub-grid scale models. This allows 

the turbulence's largest and most critical scales to be resolved while drastically decreasing the 

computing cost of the smallest scales. This method uses more computational resources than 

RANS methods, although it is much less expensive than DNS and it is very versatile. 

 

 

Figure 2.7: comparison between DNS (a), LES (b) and RANS (c) turbulence modeling. 

 

To conclude, it can be said that a direct numerical simulation of a flow is the only method for 

accurately solving the entire range of vortex scales, although the absence of a turbulence model 

causes a prohibitive increase in the computational complexity of the calculation. A solution 

approach based on the LES equations allows to solve exactly the largest scales of the vortex 
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structures but still provides for a modeling of the sub-grid eddies. This feature makes this 

approach less expensive than a DNS simulation, but the computational complexity still remains 

too high to reasonably exploit these models for most practical applications. RANS equations 

solve flow by modeling the entire spectrum of turbulence scales, returning approximate but 

sufficiently significant results to make this approach the most widely used in industrial cases.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



31 
 

3. SOFTWARE AND IT TOOLS 
 

 

 

The technology demonstrator shown in this work is based on a workflow that makes 

synergistic and combined use of various existing and widely established commercial software 

and tools on the market. These software are interfaced with each other by means of user-coded 

prototype tools developed specifically for the task of design exploration of road vehicles, but 

which are easily generalizable to adapt to any industrial application of research of optimal 

designs or analysis of specific shape variants. This chapter presents each of the main actors 

involved in the optimization process carried out, referring the reader to chapter 5 for a more 

detailed description of the internal communication logic between the tools. 

 

 

3.1. ANSYS WORKBENCH 
 

 

 ANSYS® Workbench™ is a workflow analysis platform that provides a single interface 

to all of the ANSYS tools, delivering to the users a software package that allows a more simple, 

schematic style approach to build simulation tasks. ANSYS Workbench is also built on a 

modular architecture that lets the users extend the functionality of such a numerical 

environment through add-in software components [12]. In particular, the ACT technology 

supplies internal mechanisms conceived to enable deeply integrated customizations of a 

Workbench application that can also make use of a connection with the inner libraries. In this 

work, ANSYS Workbench has been used to handle the  shape parameters of the analyzed 

geometries and to create Design of Experiment (DOE) tables. In the next paragraph, the Optimal 

Space-Filling algorithm for locating sampling points is presented. 

 

 

3.1.1. OPTIMAL SPACE-FILLING ALGORITHM 

 

Design of Experiment is a technique used to scientifically determine the location of 

sampling points. The engineering literature contains a wide range of DOE algorithms or 
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approaches. They do, however, share some traits. They strive to find sampling points in such a 

way that the space of random input parameters is explored as efficiently as possible, or they try 

to gather the required information with the fewest possible sampling points. Sample points at 

efficient locations lower the number of sample points necessary while simultaneously 

improving the accuracy of the response surface derived from the results of the sampling points. 

Optimal Space-Filling design is a Latin Hypercube Sampling (LHS) that is extended with post-

processing. It is initialized as LHS and then optimized several times, remaining a valid LHS 

(without points sharing rows or columns) while achieving a more uniform space distribution of 

points (maximizing the distance between points). Latin hypercube sampling (LHS) is a 

statistical method for generating a near-random sample of parameter values from a 

multidimensional distribution. When sampling a function with N variables, the range of each 

variable is partitioned into M equally probable intervals. The Latin hypercube requirements are 

then met by placing M sample points; this causes the number of divisions, M, to be equal for 

each variable. This sampling strategy does not require more samples for more dimensions 

(variables); this independence is one of the main advantages of this sampling scheme. Another 

benefit is that random samples can be taken one at a time while keeping track of which samples 

have already been taken. Possible disadvantages of the OSF algorithm are the fact that values 

closer to the edges and corners of the design space (extreme values) are normally not covered, 

and the lower quality of response prediction when too few design points are selected. 
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3.2. RBF MORPH 
 

 

3.2.1. RADIAL BASIS FUNCTIONS 

 

RBFs are a very powerful tool created for the interpolation of scattered data in the late ‘60s, 

but nowadays a rich collection of engineering problems can be faced using fast RBFs [13]. A 

system of RBFs is used to produce a solution for mesh morphing, once a list of source points 

and their displacements is defined (known values can be defined and retrieved everywhere in 

the space, no topology is required). This approach is valid both for surfaces shape changes and 

volume mesh smoothing. To define the shape changes, a system of radial basis functions that 

generate the nodal displacements based on a certain number of identified source points. The 

first step is to define the source points, or RBF points, on which the known user-defined 

displacements are applied. Then the RBF are used to interpolate the known displacements on 

the nodal positions using a principle of proximity: the displacement on the node is assigned 

based on the distance from the source points adjacent to the node itself. In this way, known 

displacement values can be defined anywhere, both inside and outside the domain, in arbitrary 

locations. In fact, a correspondence between the source points and the nodes of the mesh is not 

required. As a result, there is no mesh dependency and no control structures are required, thus 

the process is meshless. RBFs also allow to control the interpolation behavior of the function 

by choosing an appropriate base. From this point of view, RBF are very versatile and guarantee 

a good quality of the deformed mesh even for the most complex cases. The RBF technique is 

so fast and reliable that with parallel computing even large size models can be morphed in a 

reasonably short time, managing to process every kind of mesh element type (tetrahedral, 

hexahedral, polyhedral, prismatic, hexacore, non-conformal interfaces, etc.). The final goal of 

the technology is to perform parametric studies of component shapes and positions typical of 

the fluid-dynamic design, like design developments, multi-configuration studies, sensitivity 

analysis, design of experiment (DOE) and optimization processes. 

The behavior of the function between points depends on the kind of the adopted radial function 

[14]. RBF’s can be classified based on the type of support they have, meaning that a function 

can be globally or locally supported, referring to the domain in which the chosen radial basis 

function is different than zero [15]. That choice also influences the computational cost and 

approach used for obtaining the RBF solution. In some cases, a polynomial corrector is used to 

ensure that the fit is solvable and unique. For the calculation of sought coefficients, a linear 
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system of order equal to the number of introduced source points must be solved. RBFs can be 

used both for interpolations and for regressions of data, that is, approximating a certain amount 

of data (especially useful in the presence of noisy data-sets), because not imposing the exact 

passage of the function in the source points but establishing a minimization of the error with 

respect to the passage can lead to a smoother and better manageable function. The scalar 

function at any arbitrary position inside or outside the domain (interpolation/extrapolation) is 

expressed by the sum of the radial contributions of each source point (RBF center) and a 

polynomial term once the unknown coefficients have been found. After the RBF fit, a closed 

form of the analytical solution that defines the displacement field at each point in the domain is 

obtained. This function will have on the source points the exact values imposed and will 

interpolate the values on the remaining nodes of the mesh with a trend dependent on the type 

of radial function used. 

The general interpolation function, considering the presence of a polynomial correction (ℎ(�⃗�)), 

can be written as follows: 

 

 𝑠(�⃗�) =∑𝛾𝑖𝜑(‖�⃗� − �⃗�𝑠𝑖‖)

𝑚

𝑖=1

+ ℎ(�⃗�) (3.1) 

 

In this equation, s is the scalar function (ℝ𝑛 → ℝ) defined for an arbitrary sized variable �⃗� (the 

point at which the function is evaluated), 𝜑 is the so-called radial basis function, which is a 

scalar function of the Euclidean distance between each source point and the target point 

considered, 𝛾𝑖 is the weight of the radial function and m is the number of source points selected. 

The degree of the polynomial term depends on the kind of chosen basis. The weights of the 

radial functions 𝛾𝑖 and the polynomial coefficients 𝛽𝑖, unknowns of the system, can be retrieved 

by imposing the interpolation condition stating that the desired function values 𝑔𝑠 are obtained 

at source points: 

 

 𝑠(�⃗�𝑠𝑖) = 𝑔𝑠𝑖 (3.2) 

 

Because the order of the system is equal to the number of RBF source points, and the unknowns 

are both polynomial coefficients and RBF weights, an additional orthogonality constraint over 

the polynomial coefficients must be applied to make the system solvable: 
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 ∑𝛾𝑖𝑝(�⃗�𝑠𝑖)

𝑚

𝑖=1

= 0 (3.3) 

 

The eq. (3.3) represents the orthogonality condition of each coefficient of the polynomials p 

with a degree equal or less than that of polynomial h. If the RBF is conditionally positive 

definite, it can be demonstrated that a unique interpolant exists [16]. Moreover if the latter 

condition is respected and if the order is equal or less than 2 a linear polynomial can be used. 

Considering an n-dimensional space, the form of the polynomial function is the following: 

 

 ℎ(�⃗�) = 𝛽1 + 𝛽2𝑥1 + 𝛽3𝑥2+. . . +𝛽𝑛+1𝑥𝑛 (3.4) 

 

In matrix form, the problem to be solved takes the following form: 

 

 [
�̃� �̃�𝑠
�̃�𝑠
𝑇 0̃

] {
�⃗�

𝛽
} = {

�⃗�

0⃗⃗
} (3.5) 

 

Where �̃� is the interpolation matrix containing all the distances between RBF source points, 

 

 𝑀𝑖,𝑗 = 𝜑 (‖�⃗�𝑠𝑖 − �⃗�𝑠𝑗‖) (3.6) 

 

For all the 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑚. �̃�𝑠 is a constraint matrix that arises balancing the 

polynomial contribution and contains a column of ones and the positions of source points in the 

other columns, where the jth row is defined as: 

 

 𝑃𝑠𝑗 = [1   𝑥1𝑠𝑗
   𝑥2𝑠𝑗

  …   𝑥𝑖𝑠𝑗
  …   𝑥𝑛𝑠𝑗

] (3.7) 

 

And finally �⃗� is the vector containing the m known values at RBF centers. 

For a tridimensional case, the vector at a given point in space can be evaluated as: 
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{
 
 
 
 

 
 
 
 𝑠𝑥(�⃗�) =∑𝛾𝑖

𝑥𝜑(‖�⃗� − �⃗�𝑠𝑖‖) + 𝛽1
𝑥 + 𝛽2

𝑥𝑥 + 𝛽3
𝑥𝑦 + 𝛽4

𝑥𝑧

𝑚

𝑖=1

𝑠𝑦(�⃗�) =∑𝛾𝑖
𝑦
𝜑(‖�⃗� − �⃗�𝑠𝑖‖) + 𝛽1

𝑦
+ 𝛽2

𝑦
𝑥 + 𝛽3

𝑦
𝑦 + 𝛽4

𝑦
𝑧

𝑚

𝑖=1

𝑠𝑧(�⃗�) =∑𝛾𝑖
𝑧𝜑(‖�⃗� − �⃗�𝑠𝑖‖) + 𝛽1

𝑧 + 𝛽2
𝑧𝑥 + 𝛽3

𝑧𝑦 + 𝛽4
𝑧𝑧

𝑚

𝑖=1

 (3.8) 

 

For a mesh morphing application, this task is generally carried out for each node at which the 

deformation must be computed. It's worth noting that mesh-morphing can have an impact on 

mesh quality, and the success of the morphing action is determined by the starting quality of 

the mesh as well as the extent and positions of local deformations. The distortion of the elements 

undergoing the most severe compression/stretching can be addressed with a judicious definition 

of the baseline mesh, keeping in mind the maximum predicted deformations, so that excellent 

mesh quality can be preserved even for very considerable shape adjustments. 

 

 

Table 3.1: globally supported RBF [17]. 

 

 

Table 3.2: locally supported RBF, considering 𝜁 =
𝑟

𝑅
=

‖�⃗⃗⃗�−�⃗⃗⃗�𝑠𝑖‖

𝑅
 [17]. 

 

Numerical interpolation can be broken down into two stages: adaptation and evaluation. The 

centers are collected during the adaption phase, which is the most time-consuming in terms of 

calculation, and the suitable polynomial is defined based on the RBF chosen. The linear system 
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is then solved, yielding the polynomial coefficients and the base function's weight. Calculating 

the interpolated value at a given location is rather cheap at this point. This is referred to as the 

evaluation procedure. The major drawback for industrial applications is the large amount of 

memory required by RBF solutions. For example, using a double-precision format, an RBF 

problem with 1.000 centers requires 4 MB of memory, but a 100.000 source point problem 

requires 5 GB of memory [17]. However, there are several techniques that can be implemented 

to help lessen the problem. The distinction between sparse and dense matrices, for example, 

can be used. In fact, depending on the RBF type used, the �̃� matrix can include a large number 

of null values. Sparse matrices can be easily compressed, resulting in decreased memory usage. 

Another option is the Partition of Unity (POU) approach, useful to break down the difficult 

main problem into a series of smaller, easier-to-solve subdomains. The global solution is 

obtained by combining each subdomain's solution with the others using appropriate weighting 

functions. The final subdomains will be of different sizes but will contain an equal number of 

centers, resulting in a faster resolution time. Finally, there are a number of strategies that can 

be utilized to reduce the time required for adaptation or evaluation, and hence the overall 

computation time. When there are too many source points, one method to speed up the 

adaptation time is to approximate the interpolation by discarding some centers and using an 

algorithm based on the distance between the points, which also allows for the gradual addition 

of new source points if the error committed is too high. 

 

 

3.2.2. RBF MORPH ACT EXTENSION 

 

RBF Morph ACT (Application customization Tool) is an extension powered by the high-

performance numerical engine of RBF Morph with full support of ANSYS Mechanical. The 

already extensively proven RBF Morph technology integrated in ANSYS Fluent and available 

in Stand Alone format is able to perform fast mesh morphing using a meshless approach based 

on the state-of-the-art radial basis functions techniques. The use of such technology allows the 

CFD user to perform shape modifications compatible with the mesh topology, directly in the 

solving stage [18]. The software has a very intuitive graphical user interface (GUI) and is able 

to perform surface and volume mesh parametrization leaving unaltered the mesh topology, 

offering the potential for a fast shape change without the need for re-meshing of the 

computational domain. The RBF Morph solver has also the ability to perform advanced 
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morphing actions with parallel computing, allowing the user to obtain solutions faster and 

limiting the computational cost of every operation. 

From the user's point of view, the morphing process can be reduced to the following activities: 

• set-up: defines the source points on the surface of the geometry to be modified and on 

the volume around the geometry to control the propagation of the deformation; 

• adaptation: the RBF problem is solved and stored; 

• evaluation: the nodes to be moved are evaluated using the calculated solution. 

When dealing with a parametrization for shape optimization purposes the property of adaptation 

can be a winning point since the solution can be solved once and then stored to be used when 

needed. Once the solution has been calculated, before the actual morphing of the geometry, the 

shape change can be viewed through a preview, and it is possible to check the quality of the 

mesh. The final quality of the deformed mesh depends on the RBF chosen and the set-up used. 

A basic block of tools required by any modelling paradigm is composed by the geometric 

modifiers, a set of transformation algorithms that allow the user to apply the wanted 

modifications to the geometry. These modifiers should allow a level of control similar to CAD 

and enabling a persistent morphing with it if required, guaranteeing proper expressiveness to 

the user. 

 

Translation modifier 

The most basic modifier is translation. It's a geometric transformation that allows to move 

every selected point in a given direction by the same amount, making it a rigid transformation 

that's simple to perform by adding a constant vector to each point that has to be moved. 

Translation is a linear modifier, which means that the sequence in which numerous different 

displacements are applied has no impact on the final product. 

 

Figure 3.1: comparison of baseline (left) and deformed geometry (right) using a translation modifier. 
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Rotation modifier 

Rotation is a non-linear geometric transformation that differs from translation in that it 

ensures that at least one fixed point in space is maintained at all times. In order to conveniently 

apply the modification to complex curved geometries, the user can give information relative to 

the axis of rotation and the desired angle, or by employing principal/relative reference systems. 

Due to the nonlinear nature of rotations, direct amplifications of the observed shape variations 

would result in deformed geometry. When dealing with amplified rotations, special attention 

must be taken to rectify the geometry using a scaling correction. Furthermore, to deal with 

rotations' non-commutativity property, a technique must be used to expressively apply them by 

combining multiple modifiers correctly. 

 

 

Figure 3.2: comparison of baseline (left) and deformed geometry (right) applying a rotation modifier. 

 

Scaling modifier 

Scaling is a linear transformation that allows you to shrink or dilate specified source 

points around a central point. It is possible to shrink or extend the geometry along the 

orthogonal axes by using a scaling factor with a negative or positive value. A unitary scaling 

preserves the positions of source points, yielding the same outcome as a zero translation. 

 

 

Figure 3.3: comparison of baseline (left) and deformed geometry (right) in case of a scaling modifier 

(the red points were fixed in space using a zero-displacement modifier. 
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Projection modifier 

By defining a set of source points and target geometry, such as a mesh, this modifier projects 

the source points from their original location to the nearest point in the target geometry. As a 

result, it is possible to apply complex shape variations, such as CAD entities, or overlay parts 

of the mesh on a desired geometry. 

 

 

Figure 3.4: comparison of baseline (left) and deformed geometry (right) when a projection modifier is 

used. 

 

Offset modifier 

Another useful surface-based shape modifier is offset. Given a set of points on the grid it is 

possible to calculate the implicit surface on which they lie, evaluating for each point the normal 

to the surface. The points are moved along the normal direction. 

 

 

Figure 3.5: comparison of baseline (left) and deformed geometry (right) using the offset modifier for 

the resizing of the rod lightening hole. 

 

For Translation, Scaling and Rotation a custom coordinate system to shorten the morphing set-

up can be selected. Other available options are the order of the RBF used (linear or cubic) and 

the feature to apply the shape modification to the baseline mesh or to the already modified grid. 
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A distinction between hierarchical and single step methods can be conceived by distinguishing 

between source and target points, with source being the collection of centers determining the 

shape modification and target being the points interested by the interpolation. All mesh nodes 

are treated as target points in a conventional case, and displacements are calculated by assessing 

the field calculated on a single RBF problem defined by a collection of source points. On the 

other hand, while using the hierarchical approach, only a fraction of the points is employed as 

target, narrowing the problem to the ones that require more precise and local management. The 

final shape assumed by the target can be simply predicted by the user, avoiding long-distance 

interaction difficulties, and simplifying the set-up procedure. Using this strategy, the achieved 

target of a problem can be utilized to define the displacements of its source points in a new one, 

imposing hierarchically a field represented by precisely controlled source points on the new 

target. By changing points, edges, surfaces, or volumes to achieve the needed level of control, 

it is then possible to construct many connected problems with an increasing level of detail. 

When each RBF set-up is solved in cascade as a separate problem, it is possible to use 

alternative parameters for the solution, including the basis functions and thus the interpolation 

behavior, depending on the desired result. According to the ACT Extension of RBF Morph, the 

entire set-up, which is made up of several RBF problems that communicate with one another, 

can be viewed as a hierarchical tree structure in which each node transfers its target points to 

its parent, which is the node one level higher in the hierarchy on the same branch. The RBF 

problem is set up at a given node by blending the source nodes provided by its children. Each 

nested RBF child is called a Source, and each selection on which acts a shape modifier is called 

an RBF Target. The root problem, retrieving the whole set-up, is the more complex and the one 

that gives the final shape. 

 

 

Figure 3.6: representation of a hierarchical set-up, showing how the target points of the first RBF 

problem (top) is employed to define the source of the second problem (bottom) [17]. 
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3.3. STAR-CCM+ 
 

 

 

Simcenter STAR-CCM+ is a commercial Computational Aided Engineering (CAE) 

simulation software by Siemens Digital Industries. Simcenter STAR-CCM+ allows designers 

to model and analyze a wide range of multidisciplinary engineering problems in both fluid and 

solid continuum mechanics involving fluid flow, heat transfer, stress, particle flow, 

electromagnetics, and other phenomena. The integrated environment includes, within a single 

user interface, everything from CAD, automated meshing, multiphysics CFD, sophisticated 

postprocessing, and design exploration. This allows engineers to efficiently explore the entire 

design space to make better design decisions faster. 

The Simcenter STAR-CCM+ simulation environment includes all steps necessary for 

conducting engineering analyses, including: import and creation of geometries, mesh 

generation, solution of the governing equations, analysis of the results, automation of the 

simulation workflows for design exploration studies, connection to other CAE software for co-

simulation analysis. 

Simcenter STAR-CCM+ can simulate internal and external fluid flow for a variety of fluid 

types and flow regimes. It solves the mass, momentum, and energy conservation equations for 

general incompressible and compressible fluid flows. This chapter shows some of the 

theoretical foundations underlying the numerical methods implemented by the solver and used 

in the simulations conducted during the work. 

 

 

3.3.1. NUMERICAL FLOW SOLUTION 

 

Finite Volume Method 

The numerical solution of a partial differential equation consists in finding the values of the 

dependent variable (i.e. φ) at specific points on which its distribution can be reconstructed on a 

domain of interest. These points are called grid elements (or nodes) and result from the 

discretization of the original geometry into a set of discrete, non-overlapping elements. This 

process is known as meshing. The nodes resulting from the meshing process are generally 
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placed in the center of gravity of the cells with which the domain is discretized or on the vertices 

of the same. 

The Finite Volume Method is very popular in the discretization of differential problems in 

conservative form, as it allows to transform the set of partial differential equations into a system 

of linear algebraic equations. Nevertheless, the discretization procedure used in the Finite 

Volume Method is distinctive and involves two basic steps. In the first step, the partial 

differential equations are integrated and transformed into balance equations over an element. 

This involves changing the surface and volume integrals into discrete algebraic relations over 

elements and their surfaces using an integration quadrature of a specified order of accuracy. 

The result is a set of semi-discretized equations. In the second step, interpolation profiles are 

chosen to approximate the variation of the variables within the element and relate the surface 

values of the variables to their cell values and thus transform the algebraic relations into 

algebraic equations. 

 

 

Differential and integral form of the general transport equation 

Let φ be a generic scalar variable transported inside of a space-time domain. The differential 

equation that describes the evolution of this generic variable can be conveniently expressed 

through the following conservative form [19]: 

 

 
𝜕(𝜌𝜑)

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝜑�⃗⃗�) = 𝑑𝑖𝑣(Γ∇𝜑) + 𝑆𝜑 (3.9) 

 

in which the various terms represent, from left to right: the rate of change of property φ in an 

elementary material particle (where ρ represents the particle density), the specific flow of φ 

coming out of the elementary particle, the specific increase in φ due to diffusion (with Γ 

diffusion coefficient), specific increase in φ due to generic sources. 

Integrating equation (3.9) on a generic reference control volume of finite dimensions leads to 

the integral form of the general transport equation. 

 

 ∫
𝜕(𝜌𝜑)

𝜕𝑡
𝑑𝑉

𝐶𝑉

+∫ 𝑑𝑖𝑣(𝜌𝜑�⃗⃗�)𝑑𝑉
𝐶𝑉

= ∫ 𝑑𝑖𝑣(Γ∇𝜑)
𝐶𝑉

𝑑𝑉 + ∫ 𝑆𝜑
𝐶𝑉

𝑑𝑉 (3.10) 

 

This equation can then be reformulated by applying Gauss's Theorem to some of its terms. 



44 
 

 

 
𝜕

𝜕𝑡
∫ (𝜌𝜑)𝑑𝑉
𝐶𝑉

+∫ (𝜌𝜑�⃗⃗�) ∙ �⃗⃗�𝑑𝐴
𝐴

= ∫ (Γ∇𝜑) ∙
𝐴

�⃗⃗�𝑑𝐴 + ∫ 𝑆𝜑
𝐶𝑉

𝑑𝑉 (3.11) 

 

which is the basic form of the general transport equation normally used for the application of 

the finite volume method. The physical meaning of the various terms can be described as 

follows (again from left to right): accumulation rate of the property φ within the control volume; 

net balance of the convective flow of φ through the contour surface of the control volume 

(known as convective term), net balance of the diffusive flow of φ through the contour surface 

of the volume control (known as diffusive term), increased φ due to generic sources within the 

control volume. 

Integrating on the generic finite time interval ∆t, the (3.11) becomes: 

 

 ∫
𝜕

𝜕𝑡
∫ (𝜌𝜑)𝑑𝑉
𝐶𝑉∆𝑡

+∫ ∫ (𝜌𝜑�⃗⃗�) ∙ �⃗⃗�𝑑𝐴
𝐴∆𝑡

= ∫ ∫ (Γ∇𝜑) ∙
𝐴

�⃗⃗�𝑑𝐴
∆𝑡

+∫ ∫ 𝑆𝜑
𝐶𝑉

𝑑𝑉
∆𝑡

 (3.12) 

 

It is easy to identify, from left to right in the above equation: the transient term (which signifies 

the time rate of change of fluid property φ inside the control volume), the convective flux 

(which expresses the net rate of decrease of fluid property φ across the control volume 

boundaries due to convection), the diffusive flux (which corresponds to the net rate of increase 

of fluid property φ across the control volume boundaries due to diffusion) and the source term 

(which expresses the generation/destruction of fluid property φ inside the control volume). 

Otherwise, in the hypothesis of a stationary problem, the transport equation is formulated as 

follows: 

 

 ∫ (𝜌𝜑�⃗⃗�) ∙ �⃗⃗�𝑑𝐴
𝐴

= ∫ (Γ∇𝜑) ∙
𝐴

�⃗⃗�𝑑𝐴 + ∫ 𝑆𝜑
𝐶𝑉

𝑑𝑉 (3.13) 

 

 

Discretization of government equations 

The numerical solution of a fluid dynamic problem requires the spatial and temporal 

discretization of its government equations. Discretization is a mathematical process of 

transforming continuous equations into their discrete counterparts and is a fundamental process 

in making equations adequate for a numerical solution and its implementation for computer-
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assisted digital computation. For simplicity, this paragraph presents the case of incompressible 

fluid on a two-dimensional domain, but the same considerations also apply to more general 

cases [20]. 

The discretization of the continuity equation (eq. (2.11)) is easy to derive and is obtained by 

integration on an arbitrary control volume followed by the application of the Divergence 

Theorem. 

 

 
(𝜌 − 𝜌0)∆𝑥∆𝑦

∆𝑡
+ [(𝜌𝑢)𝑒 − (𝜌𝑢)𝑤]∆𝑦 + [(𝜌𝑣)𝑛 − (𝜌𝑣)𝑠]∆𝑥 = 0 (3.14) 

 

Continuing to consider an incompressible flow and assuming the absence of volume forces, the 

eq. (2.41) is reduced to: 

 

 𝜌
𝜕�⃗⃗�

𝜕𝑡
+ 𝜌�⃗⃗� ∙ ∇⃗⃗⃗�⃗⃗� = −∇⃗⃗⃗𝑃 + 𝜇∇2�⃗⃗� (3.15) 

 

which, when written in terms of velocity components, takes the form: 

 

 𝜌
𝜕𝑢𝑖
𝜕𝑡

+ 𝜌
𝜕𝑢𝑖𝑢𝑗

𝜕𝑥𝑗
= −

𝜕𝑃

𝜕𝑥𝑗
+ 𝜇

𝜕2𝑢𝑖
𝜕𝑥𝑗𝜕𝑥𝑗

 (3.16) 

 

In the eq. (3.15) and (3.16) the dynamic viscosity coefficient of the fluid has been indicated 

with μ. Integrating again on an arbitrary control volume and applying the Gauss-Green 

Divergence Theorem, the convective terms that appear in the eq. (4.8) can be written in 

discretized form. 

 

 𝜌
𝜕𝑢𝑖
𝜕𝑡

𝑉 + 𝜌∑(𝑢𝑖𝑢𝑗𝑛𝑗𝐴)𝑛𝑏𝑟
𝑛𝑏𝑟

= −∑(𝑃𝑛𝑖𝐴)𝑛𝑏𝑟
𝑛𝑏𝑟

+ 𝜇∑(
𝜕𝑢𝑖
𝜕𝑥𝑗

𝑛𝑗𝐴)
𝑛𝑏𝑟𝑛𝑏𝑟

 (3.17) 

 

where with the subscript nbr (neighbor) have been named the values on each of the faces that 

make up the considered volume. In the case of a two-dimensional cartesian grid, the eq. (3.17) 

can be expanded in the form shown below. 
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𝜌
𝜕𝑢𝑖
𝜕𝑡

∆𝑥∆𝑦 + 𝜌[(𝑢𝑖𝑢∆𝑦)𝑒 − (𝑢𝑖𝑢∆𝑦)𝑤] + 𝜌[(𝑢𝑖𝑣∆𝑥)𝑛 − (𝑢𝑖𝑣∆𝑥)𝑠]

= −[(𝑃𝑛𝑖∆𝑦)𝑒 − (𝑃𝑛𝑖∆𝑦)𝑤 + (𝑃𝑛𝑖∆𝑥)𝑛 − (𝑃𝑛𝑖∆𝑥)𝑠]

+  𝜇 [(
𝜕𝑢𝑖
𝜕𝑥

∆𝑦)
𝑒
+ (

𝜕𝑢𝑖
𝜕𝑥

∆𝑦)
𝑤
+ (

𝜕𝑢𝑖
𝜕𝑦

∆𝑥)
𝑛

+ (
𝜕𝑢𝑖
𝜕𝑦

∆𝑥)
𝑠

] 

(3.18) 

 

The previous expression, in the presence of a staggered grid, is reported in the eq. (3.19) and 

(3.20) separating the components along the x-axis and along the y-axis. 

 

 

𝜌
𝜕𝑢

𝜕𝑡
∆𝑥∆𝑦 + 𝜌[(𝑢𝑢∆𝑦)𝑒 − (𝑢𝑢∆𝑦)𝑤] + 𝜌[(𝑢𝑣∆𝑥)𝑛 − (𝑢𝑣∆𝑥)𝑠]

= −[(𝑃∆𝑦)𝑒 − (𝑃∆𝑦)𝑤]

+ 𝜇 [(
𝜕𝑢

𝜕𝑥
∆𝑦)

𝑒
+ (

𝜕𝑢

𝜕𝑥
∆𝑦)

𝑤
+ (

𝜕𝑢

𝜕𝑦
∆𝑥)

𝑛

+ (
𝜕𝑢

𝜕𝑦
∆𝑥)

𝑠

] 

(3.19) 

 

 

𝜌
𝜕𝑣

𝜕𝑡
∆𝑥∆𝑦 + 𝜌[(𝑣𝑢∆𝑦)𝑒 − (𝑣𝑢∆𝑦)𝑤] + 𝜌[(𝑣𝑣∆𝑥)𝑛 − (𝑣𝑣∆𝑥)𝑠]

= −[(𝑃∆𝑥)𝑛 − (𝑃∆𝑥)𝑠]

+ 𝜇 [(
𝜕𝑣

𝜕𝑥
∆𝑦)

𝑒
+ (

𝜕𝑣

𝜕𝑥
∆𝑦)

𝑤
+ (

𝜕𝑣

𝜕𝑦
∆𝑥)

𝑛

+ (
𝜕𝑣

𝜕𝑦
∆𝑥)

𝑠

] 

(3.20) 

 

 

Figure 3.7: Two-dimensional cartesian grid element [20]. 
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For the above equations, expressions for the interface values of u, v and P and an expression 

that allows to approximate the derivatives in time and space as finite differences remain to be 

derived. 

Time derivatives can be rewritten in discrete terms using the backward finite differences 

method. For both conservation equations of momentum (eq. (3.19) and (3.20)) the time 

derivative becomes: 

 

 
𝜕𝑢𝑖
𝜕𝑡

=
𝑢𝑖
𝑛 − 𝑢𝑖

𝑛−1

∆𝑡
 (3.21) 

 

where the temporal step has been indicated with ∆t and the index of the temporal instant has 

been indicated with n. 

The discretization of the spatial derivatives present in the diffusive terms takes place by 

evaluating the difference between velocity values located on the nodes adjacent to the interface 

to be evaluated. 

 

 (
𝜕𝑢

𝜕𝑥
)
𝑒
=
𝑢𝐸 − 𝑢𝑃
∆𝑥

 (3.22) 

 

 (
𝜕𝑢

𝜕𝑥
)
𝑤
=
𝑢𝑃 − 𝑢𝑊
∆𝑥

 (3.23) 

 

 (
𝜕𝑢

𝜕𝑦
)
𝑛

=
𝑢𝑁 − 𝑢𝑃
∆𝑦

 (3.24) 

 

 (
𝜕𝑢

𝜕𝑦
)
𝑠

=
𝑢𝑃 − 𝑢𝑆
∆𝑦

 (3.25) 

 

Having interest in evaluating unknown variables at locations (interfaces) other than the control 

volume computational nodes, it is necessary to proceed to the formulation of a mathematical 

interpolation scheme. There are various types of interpolation formulae: central difference, 

upwind, quadratic upwind, QUICK, hybrid, etc [21].  
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As an example, let us compare central differences and upwind interpolation schemes: by 

applying the upwind scheme, the expressions of the interface values are derived according to 

eq.  (3.26), while the same expressions treated with the interpolation scheme of the centered 

differences are derived as reported in eq. (3.27). The following equations are written for the 

horizontal velocity component u only but can be generalized for each component of the velocity 

vector. 

 

 upwind:   {
𝑢𝑒 = 𝑢𝑃   ;    𝑢𝑤 = 𝑢𝑊   𝑠𝑒   𝐹𝑒 > 0
𝑢𝑒 = 𝑢𝐸    ;    𝑢𝑤 = 𝑢𝑃   𝑠𝑒   𝐹𝑒 < 0

 (3.26) 

 

 centered differences:   {
𝑢𝑒 =

𝑢𝑃+𝑢𝐸

2

𝑢𝑤 =
𝑢𝑊+𝑢𝑃

2

 (3.27) 

 

The decision on which interpolation method to employ is based on the Reynolds number 

associated with the flow: 

 

 𝑅𝑒 =
𝜌𝑢𝐻

𝜇
 (3.28) 

 

This dimensionless number represents a measure of the relationship between convection and 

diffusion. When the Reynolds number is small enough, the flow is poorly directional, and the 

method of centered differences works well; on the contrary, as Re grows,  problems of 

instability begin to occur, and the solution tends to diverge. In practice, the centered difference 

method is only applied for limited Reynolds numbers, while for higher values the upwind 

interpolation scheme is preferable. 

 

 

SIMPLE algorithm 

The Simcenter STAR-CCM+ is a commercially available CFD package that includes 

geometry/computer-aided design (CAD) manipulation tools, a grid generator capable of 

generating different unstructured grid topologies (polyhedral, Cartesian, tetrahedral), various 

flow solvers, and post-processing tools. The flow solvers of STAR-CCM+ solve the RANS 

equation in finite-volume, cell-centered formulation. The Segregated Flow model invokes the 
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segregated solver which solves each of the momentum equations in turn, one for each 

dimension. The linkage between the momentum and continuity equations is achieved with a 

predictor-corrector approach. The complete formulation can be described as using a colocated 

variable arrangement and a pressure-velocity coupling combined with a SIMPLE-type 

algorithm. 

 

 

Figure 3.8: flowchart of the iterative process of the SIMPLE algorithm. 

 

 

STEP 1: assignation of 

boundary conditions and of 

initial fields uold, vold and Pold 

STEP 2: solving the Navier-Stokes 

equations obtaining the incorrect 

velocity fields u* and v* 

STEP 3: solution of the Poisson 

equation obtaining the  pressure 

correction field P' 

STEP 4: pressure correction 

obtaining the pressure P 

STEP 5: velocity correction 

obtaining velocities u and v 

CONVERGENCE? 

END OF THE ITERATIVE 

PROCEDURE 

YES 

NO 

STEP 6: return to STEP 1 

assuming uold=u, vold=v 

and Pold=P 

BEGINNING OF THE 

ITERATIVE PROCEDURE 
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The SIMPLE algorithm, whose development is attributed to Prof. Suhas V. Patankar [19], is an 

iterative numerical method widely employed in computational fluid dynamics for solving the 

Navier-Stokes equations.  In the algorithm, the solution to the fluid dynamics problem is derived 

iteratively, generating velocity and pressure fields that consecutively satisfy the equations of 

conservation of momentum and mass, progressively approaching the final solution with each 

iterative calculation cycle. The sequence of operations predicted by the algorithm is 

summarized in the flowchart shown in fig. 3.8. 

Based on eq. (2.11), the single equation for the generic control volume identified around a 

velocity node u takes the following form: 

 

 𝑎𝑒𝑢𝑒 =∑𝑎𝑛𝑏𝑟
𝑛𝑏𝑟

𝑢𝑛𝑏𝑟 +
𝑃𝑃 − 𝑃𝐸
𝜌

𝐴𝑒 + 𝑏 (3.29) 

 

Similarly, for a node of velocity v it is true that: 

 

 𝑎𝑛𝑣𝑛 =∑𝑎𝑛𝑏𝑟
𝑛𝑏𝑟

𝑣𝑛𝑏𝑟 +
𝑃𝑃 − 𝑃𝑁

𝜌
𝐴𝑛 + 𝑏 (3.30) 

 

In the absence of volume forces, the preceding expressions are simplified by introducing the 

condition b =0. 

The eq. (3.29) and (3.30) are solvable only once the pressure field P is known, of which an 

initial distribution is assumed (estimated) in STEP 1 of the algorithm procedure (P*). A system 

of equations such as the following is ultimately reached. 

 

 

{
 
 

 
 𝑎𝑒𝑢𝑒

∗ =∑𝑎𝑛𝑏𝑟
𝑛𝑏𝑟

𝑢𝑛𝑏𝑟
∗ +

𝑃𝑃
∗ − 𝑃𝐸

∗

𝜌
𝐴𝑒

𝑎𝑛𝑣𝑛
∗ =∑𝑎𝑛𝑏𝑟

𝑛𝑏𝑟

𝑣𝑛𝑏𝑟
∗ +

𝑃𝑃
∗−𝑃𝑁

∗

𝜌
𝐴𝑛

 (3.31) 

 

The solution of which is an incorrect velocity field (u*,v*) since it does not yet meet the 

continuity condition.  To obtain the correct velocity and pressure fields, correction fields must 

be added to these incorrect values. 

 



51 
 

 {
𝑃 =  𝑃∗ + 𝑃′

𝑢 =  𝑢∗ + 𝑢′

𝑣 =  𝑣∗ + 𝑣′
 (3.32) 

 

The link between velocity and pressure corrections is the equations system (3.33). 

 

 

{
 
 

 
 𝑎𝑒𝑢𝑒

′ =∑𝑎𝑛𝑏𝑟
𝑛𝑏𝑟

𝑢𝑛𝑏𝑟
′ +

𝑃𝑃
′ − 𝑃𝐸

′

𝜌
𝐴𝑒

𝑎𝑛𝑣𝑛
′ =∑𝑎𝑛𝑏𝑟

𝑛𝑏𝑟

𝑣𝑛𝑏𝑟
′ +

𝑃𝑃
′−𝑃𝑁

′

𝜌
𝐴𝑛

 (3.33) 

 

Neglecting for the correction terms the contribution of neighboring nodes you get: 

 

 

{
 
 

 
 𝑎𝑒𝑢𝑒

′ =
𝑃𝑃
′ − 𝑃𝐸

′

𝜌
𝐴𝑒

𝑎𝑛𝑣𝑛
′ =

𝑃𝑃
′−𝑃𝑁

′

𝜌
𝐴𝑛

 (3.34) 

 

Thus: 

 

 {
𝑢𝑒
′ = 𝑑𝑒(𝑃𝑃

′ − 𝑃𝐸
′ )

𝑣𝑛
′ = 𝑑𝑛(𝑃𝑃

′−𝑃𝑁
′ )

 (3.35) 

 

Having indicated with de and dn respectively the coefficients: 

 

 𝑑𝑒 =
𝐴𝑒
𝜌𝑎𝑒

 (3.36) 

 

 𝑑𝑛 =
𝐴𝑛
𝜌𝑎𝑛

 (3.37) 

 

In conclusion, the correct velocity components are calculated as: 
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 {
𝑢𝑒 = 𝑢𝑒

∗ + 𝑑𝑒(𝑃𝑃
′ − 𝑃𝐸

′ )

𝑣𝑛 = 𝑣𝑛
∗ + 𝑑𝑛(𝑃𝑃

′−𝑃𝑁
′ )

 (3.38) 

 

The pressure corrections that appear in the preceding expressions are derived from the 

discretized continuity equation (eq. (2.6)). 

 

 𝑎𝑃𝑃𝑃
′ = 𝑎𝐸𝑃𝐸

′ + 𝑎𝑊𝑃𝑊
′ + 𝑎𝑁𝑃𝑁

′ + 𝑎𝑆𝑃𝑆
′ − 𝑏 (3.39) 

 

Where: 

 

 𝑎𝐸 = 𝑑𝑒∆𝑦 (3.40) 

 

 𝑎𝑊 = 𝑑𝑤∆𝑦 (3.41) 

 

 𝑎𝑁 = 𝑑𝑛∆𝑥 (3.42) 

 

 𝑎𝑆 = 𝑑𝑠∆𝑥 (3.43) 

 

 𝑎𝑃 = 𝑎𝐸 + 𝑎𝑊 + 𝑎𝑁 + 𝑎𝑆 (3.44) 

 

 𝑏∗ = (𝑢𝑒
∗ − 𝑢𝑤

∗ )∆𝑦 + (𝑣𝑛
∗ − 𝑣𝑠

∗)∆𝑥 (3.45) 

 

 

SIMPLE-R algorithm 

The approximation introduced in the derivation of the pressure field P' can lead to even 

very strong pressure corrections, making it necessary to proceed to a form of underrelaxation. 

This is because the pressure correction also preserves the weight of the velocity field correction. 

The SIMPLER algorithm, briefly illustrated in fig. 3.9, exploits the equation for P' for velocity 

correction only, deriving instead an additional expression for the correct pressure P. 

Returning to consider the discrete equations starting from the conservation of the momentum 

along x and along y, SIMPLER provides for the preliminary calculation of the pseudo-velocity 

components, obtained from the eq. (3.29) and (3.30) neglecting pressure terms. 
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 �̂�𝑒 =
∑ 𝑎𝑛𝑏𝑟𝑢𝑛𝑏𝑟𝑛𝑏𝑟

𝑎𝑒
 (3.46) 

 

 𝑣𝑛 =
∑ 𝑎𝑛𝑏𝑟𝑣𝑛𝑏𝑟𝑛𝑏𝑟

𝑎𝑛
 (3.47) 

 

 

 

Figure 3.9: flowchart of the iterative process of the SIMPLER algorithm. 

 

 

STEP 1: assignation of 

boundary conditions and of 

initial fields uold, vold 

STEP 2: solution of the Poisson 

equation obtaining the correct 

pressure field P 

STEP 3: assignation of the initial 

pressure field as Pold = P 

 

STEP 4: solution of the Poisson 

equation obtaining the pressure 

corrections field P' 

STEP 5: velocity correction 

obtaining velocities u and v 

CONVERGENCE? 

END OF THE ITERATIVE 

PROCEDURE 

YES 

NO 

STEP 6: Return to STEP 1 

assuming uold=u, vold=v 

and Pold=P 

BEGINNING OF THE 

ITERATIVE PROCEDURE 
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Therefore: 

 

 {
𝑢𝑒 = �̂�𝑒 + 𝑑𝑒(𝑃𝑃 − 𝑃𝐸)

𝑣𝑛 = 𝑣𝑛 + 𝑑𝑛(𝑃𝑃 − 𝑃𝑁)
 (3.48) 

 

Where the terms of correct pressure P appear, and not its corrections. 

The pressure field to be inserted into the system of equations (3.48) is obtainable from the 

solution of the following system of linear equations (Poisson equations for pressure). 

 

 𝑎𝑃𝑃𝑃 = 𝑎𝐸𝑃𝐸 + 𝑎𝑊𝑃𝑊 + 𝑎𝑁𝑃𝑁 + 𝑎𝑆𝑃𝑆 − 𝑏 (3.49) 

 

Where: 

 

 𝑎𝐸 = 𝑑𝑒∆𝑦 (3.50) 

 

 𝑎𝑊 = 𝑑𝑤∆𝑦 (3.51) 

 

 𝑎𝑁 = 𝑑𝑛∆𝑥 (3.52) 

 

 𝑎𝑆 = 𝑑𝑠∆𝑥 (3.53) 

 

 𝑎𝑃 = 𝑎𝐸 + 𝑎𝑊 + 𝑎𝑁 + 𝑎𝑆 (3.54) 

 

 �̂� = (�̂�𝑒 − �̂�𝑤)∆𝑦 + (𝑣𝑛 − 𝑣𝑠)∆𝑥 (3.55) 

 

 

RANS turbulence model 

The majority of engineering-relevant fluid flows have irregularly fluctuating flow 

quantities. These variations are frequently at such small scales and high frequencies that 

resolving them in time and space is prohibitively computationally expensive. It is less expensive 

to solve for averaged or filtered quantities and approximate the impact of minor fluctuating 

structures rather than solving for the exact governing equations of turbulent flows (as in Direct 

Numerical Simulation). Different techniques to modeling these structures are provided by 

turbulence models. The Reynolds-Averaged Navier-Stokes equations are time-averaged 
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equations of motion for fluid flow, and before deriving them it is appropriate to present the 

concepts of kinetic energy k and energy dissipation ε. 

Starting from the balance equation of momentum for a viscous and incompressible flow, 

 

 𝜌
𝜕�⃗⃗�

𝜕𝑡
+ 𝜌�⃗⃗� ∙ ∇�⃗⃗� = −∇𝑃 + 𝜌𝑓 + 𝜇∇2�⃗⃗� (3.56) 

 

it is possible to write an equation of the balance for the kinetic energy k in a volume of fluid V 

by multiplying the previous equation scalarly by u. 

 

 𝑘 =
1

2
∫ 𝜌�⃗⃗� ∙ �⃗⃗�
𝑉

𝑑𝑉 =
1

2
𝜌∫ |�⃗⃗�|2

𝑉

𝑑𝑉 (3.57) 

 

Following some mathematical steps [22] an expression for the temporal evolution of kinetic 

energy in a fluid volume is obtained: 

 

 
𝑑𝑘

𝑑𝑡
= ∫ 𝜌𝑓 ∙ �⃗⃗�

𝑉

𝑑𝑉 − ∫ 𝜌𝜈|∇�⃗⃗�|2

𝑉

𝑑𝑉 (3.58) 

 

The last term of this equation contains the definition of the dissipation rate of kinetic energy 

per unit mass. 

 

 𝜀 = 𝜈|∇�⃗⃗�|2 (3.59) 

 

Therefore, the expression for the temporal variation of kinetic energy can be written in compact 

form by replacing the definition for ε. 

 

 
𝑑𝑘

𝑑𝑡
= ∫ 𝜌𝑓 ∙ �⃗⃗�

𝑉

𝑑𝑉 − ∫ 𝜌𝜀
𝑉

𝑑𝑉 (3.60) 

 

The newly found relationship allows to see that in the expression for the variation of kinetic 

energy k, only the terms derived from volume forces and viscosity terms are included, while no 

trace of non-linear and pression terms is preserved. Because k is the kinetic energy of a fluid 

system integrated on V, it follows that the convective and pressure terms do not affect the 
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overall energy balance, but rather act on its transfer, whether from one point to another in space 

or through the many scales of kinetic energy. The other observation is related to the definition 

of ε which, being positive defined, indicates the continuous decrease in kinetic energy of the 

system due to this term. In other words, if in the relation (3.60) there were no term containing 

then the kinetic energy would inexorably decrease over time until a flow at rest is obtained. 

Conversely, if a flow 𝑓 is statistically stationary then its kinetic energy is constant, and equation 

(3.60) implies that the energy input into the system in constant quantities over time (constant 

power) is dissipated at the same rate by the viscosity of the fluid. 

RANS turbulence models provide closure relations for the Reynolds-Averaged Navier-Stokes 

equations, that govern the transport of the mean flow quantities. To obtain the Reynolds-

Averaged Navier-Stokes equations, each solution variable in the instantaneous Navier-Stokes 

equations is decomposed into its mean, or averaged, value and its fluctuating component, 

according to the Reynolds hypothesis. For a generic variable φ this hypothesis translates into: 

 

 𝜑 = �̅� + 𝜑′ (3.61) 

 

Where it is indicated with �̅� the average value of 𝜑 and with 𝜑′ its fluctuating component. 

Substituting this expression (in the case when φ represents the velocity u and the pressure P) in 

the general equation of conservation of the momentum of a fluid yields the following form of 

the Navier-Stokes equations averaged according to Reynolds [22]. 

 

 

Figure 3.10: decomposition of a statistically non-stationary signal in its ensemble average part and 

fluctuating part [22]. 

 

 
𝜕𝜌�⃗⃗̅�

𝜕𝑡
+ ∇ ∙ (𝜌�⃗⃗̅��⃗⃗̅�) = −∇ ∙ �̅�𝐼 + ∇ ∙ (𝜏̅̃ + �̃�𝑅𝐴𝑁𝑆) + 𝑓 (3.62) 
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In which it is denoted with 𝐼 the identity tensor, 𝜏̅̃ the mean stress tensor, and �̃�𝑅𝐴𝑁𝑆 the 

Reynolds stress tensor. The equation just derived is essentially identical to that obtained in 

(2.26) with the difference that a further term now appears in the contribution of the stress tensor, 

represented precisely by the Reynolds stress tensor, which can be expressed in the following 

form: 

 

 �̃�𝑅𝐴𝑁𝑆 = −𝜌(
𝑢′𝑢′̅̅ ̅̅ ̅̅ 𝑢′𝑣′̅̅ ̅̅ ̅̅ 𝑢′𝑤′̅̅ ̅̅ ̅̅

𝑣′𝑢′̅̅ ̅̅ ̅̅ 𝑣′𝑣′̅̅ ̅̅ ̅̅ 𝑣′𝑤′̅̅ ̅̅ ̅̅

𝑤′𝑢′̅̅ ̅̅ ̅̅ 𝑤′𝑣′̅̅ ̅̅ ̅̅ 𝑤′𝑤′̅̅ ̅̅ ̅̅ ̅
) +

2

3
𝜌𝑘𝐼 (3.63) 

 

Having indicated with k the turbulent kinetic energy. It is now evident that the problem is no 

longer of closed form, since the number of equations has remained the same, equal to 4 

(considering the continuity equation), but the number of unknowns has risen to 13 (u, v, w, P 

and �̃�𝑅𝐴𝑁𝑆). The challenge is thus to model in terms of the mean flow quantities, and hence 

provide closure of the governing equations. Two basic approaches are used in Simcenter 

STAR-CCM+: Eddy viscosity models and Reynolds stress transport models. The most 

common Eddy viscosity models are based on the Boussinesq approximation, which introduces 

the concept of a turbulent (eddy) viscosity 𝜇𝑡 allowing for a characterization of the stress tensor 

as a function of mean flow quantities. The eddy viscosity models in Simcenter STAR-CCM+ 

[23] solve additional transport equations for scalar quantities that enable the turbulent viscosity 

to be derived. Spalart-Allmaras, k-ε and k-𝜔 are such models. Some considerations can be 

advanced on how to choose the most suitable turbulence model based on the application: 

Spalart-Allmaras is convenient when the separation, if it occurs, is contained (very common in 

external aerodynamic applications of aircraft vehicles, very unsuitable instead in case of strong 

recirculations or in the presence of natural convection); k-ε is a good compromise in terms of 

stability and computational cost, and is convenient in the presence of strong recirculations (with 

or without heat exchange); k-ω are similar to Spalart-Allmaras and are recommended for 

external aerodynamic applications. Reynolds Stress Transport Models are the most complex 

and recommended only in case of strong anisotropic turbulence and complex flows. 

 

 

Standard k-ε model 

The most frequent model used in computational fluid dynamics to simulate mean flow 

characteristics for turbulent flow conditions is the k-ε turbulence model. The model was created 
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with the goal of improving the mixing-length model and finding an alternative to algebraically 

prescribing turbulent length scales in particularly complex flows. The k-ε model is a two-

equation model that uses two transport equations in the mathematical form of partial differential 

equations to give a general representation of turbulence. It solves one transport equation for the 

turbulent kinetic energy and one for the turbulent dissipation rate in order to determine the 

turbulent eddy viscosity. The formulation suggested by Jones and Launder [24], with 

coefficients suggested by Launder and Sharma, is typically called the "Standard" K-epsilon 

Model. 

In these models, the turbulent kinetic energy k and its dissipation rate ε are used to create, by 

dimensional considerations, a scale of lengths, 

 

 ℓ =
𝑘
3
2

ε
 (3.64) 

 

and time. 

 

 𝒯 =
𝑘

ε
 (3.65) 

 

With these quantities it is possible to build a turbulent viscosity: 

 

 𝜈𝑡 = 𝐶𝜈
𝑘2

ε
 (3.66) 

 

Where with 𝐶𝜈 is indicated a constant to be determined empirically.  

For turbulent kinetic energy and its dissipation rate, the following two empirical correlations 

respectively apply [25]. 

 

 
𝜕

𝜕𝑡
(𝜌𝑘) + ∇ ∙ (𝜌�⃗⃗�𝑘) = ∇ ∙ (𝜇𝑒𝑓𝑓,𝑘∇𝑘) + 𝑃𝑘 − 𝜌𝜀 (3.67) 

 

 
𝜕

𝜕𝑡
(𝜌𝜀) + ∇ ∙ (𝜌�⃗⃗�𝜀) = ∇ ∙ (𝜇𝑒𝑓𝑓,𝜀∇𝜀) + 𝐶1𝜀

𝜀

𝑘
𝑃𝑘 − 𝐶2𝜀𝜌

𝜀2

𝑘
 (3.68) 

 

Where: 
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 𝜇𝑒𝑓𝑓,𝑘 = 𝜇 +
𝜇

𝜎𝑘
 (3.69) 

 

 𝜇𝑒𝑓𝑓,𝜀 = 𝜇 +
𝜇

𝜎𝜀
 (3.70) 

 

 𝑃𝑘 = −𝜌𝑢𝑖
′𝑢𝑗
′̅̅ ̅̅ ̅̅
𝜕𝑢𝑗

𝜕𝑥𝑖
 (3.71) 

 

The formulation of the production term 𝑃𝑘 depends on the K-Epsilon model variant. 

The values of the model constants have been arrived at by numerous iterations of data fitting 

for a wide range of turbulent flows. A widely used set of values is 𝐶𝜈 = 0.09, 𝐶1𝜀 = 1.44, 𝐶2𝜀 =

1.92, 𝜎𝑘 = 1 and 𝜎𝜀 = 1.3. 

 

 

Realizable k-ε model 

The Realizable K-Epsilon model contains a new transport equation for the turbulent 

dissipation rate 𝜀. Also, a variable damping function 𝑓𝜈, expressed as a function of mean flow 

and turbulence properties, is applied to a critical coefficient of the model 𝐶𝜈. This procedure 

lets the model satisfy certain mathematical constraints on the normal stresses consistent with 

the physics of turbulence (realizability). This concept of a damped 𝐶𝜈 is also consistent with 

experimental observations in boundary layers. 

This model is substantially better than the Standard K-Epsilon model for many applications and 

can generally be relied upon to give answers that are at least as accurate. Both the standard and 

realizable models are available in Simcenter STAR-CCM+ with the option of using a two-layer 

approach, which enables them to be used with fine meshes that resolve the viscous sublayer. 

 

 

 

Wall treatment 

When a turbulent flow approaches a wall, the mean and fluctuation components of velocity, 

and hence k, disappear, resulting in huge gradients. Furthermore, the very high turbulent 
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stresses away from the wall diminish to magnitudes comparable to the viscous stresses in the 

near wall layer. As a result, a large number of grid points will be required to resolve the near 

wall layer. Low Reynolds number turbulence models can simulate the wall's dampening effects, 

but they do so at the cost of a high number of grid points. This is an inevitable expense that 

must be paid if precise flow solutions in the near wall region are needed. 

The high Reynolds number turbulence approach, as illustrated by the conventional k-ε model, 

on the other hand, avoids the necessity to resolve the near wall layer by using wall functions. 

This method assumes and superimposes theoretical profiles between the boundary surface and 

the first near-wall node. Wall functions minimize the computational cost greatly when 

compared to the previous method. The fundamental drawback of this strategy is that the validity 

of these profiles can only be determined and justified in near-equilibrium boundary layers [25]. 

Considering first the region closest to the wall, another scale can be defined, which expresses 

the thickness of the viscous substrate, through the friction velocity (u𝜏): 

 

 𝛿𝑣 = 𝜈√
𝜌

|𝜏𝑤|
=
𝜈

𝑢𝜏
 (3.72) 

 

𝜈 is the kinematic viscosity and |𝜏𝑤| is the magnitude of the wall shear stress. Thus, the distance 

from the wall can be expressed with the non-dimensional distance y+ with respect to 𝛿𝜈: 

 

 𝑦+ =
𝑦

𝛿𝜈
=
𝑢𝜏𝑦

𝜈
 (3.73) 

 

Similarly, based on other dimensional considerations, the wall-tangential velocity component 

u+ of the velocity vector can be expressed as: 

 

 𝑢+ =
𝑢

𝑢𝜏
 (3.74) 

 

Each of the sublayers can be modeled using different empirical approaches. The non-

dimensional wall distance 𝑦+ (eq. (3.73)) can be used to define the extents of the sublayers. 

The following plot shows the non-dimensional velocity 𝑢+ (eq. (3.74)) as a function of 𝑦+ 

across the three sublayers. 
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Figure 3.11: representation of the sublayers inside the inner region of the boundary layer [23]. 

 

The boundary layer's inner region can be divided into three sublayers. The flow has different 

features in each of them: 

• Viscous sublayer (0 < 𝑦+ < 5): the fluid layer in contact with the wall is dominated 

by viscous effects and is almost laminar. By adhesion hypothesis, in the vicinity of the 

wall the velocity is lower, and therefore the Reynolds number is lower and the swirling 

structures tend to not develop. The mean flow velocity only depends on the fluid density, 

viscosity, distance from the wall, and the wall shear stress. In the viscous substrate the 

stress can be considered constant (and equal to the wall stress), a hypothesis that 

determines the linear dependence of the velocity on the distance from the wall. For this 

region of the viscous sublayer the correlation between the normalized velocity and the 

normalized wall distance is linear (𝑢+ = 𝑦+). 

• Log layer (30 < 𝑦+ < 200): away from the wall the inertial terms (and therefore the 

Reynolds stresses) prevail; the turbulent log layer is dominated equally by viscous and 

turbulent effects. In this region the correlation between normalized velocity and wall 

distance follows a logarithmic law of type 𝑢+ =
1

𝐾
ln(𝐸𝑦+), K being the von Karman’s 

constant (K = 0.4187) and E being an integration constant that depends on the roughness 

of the wall. 
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• Buffer layer (5 < 𝑦+ < 30): the buffer layer is a transitional layer between the viscous 

sublayer and the log layer. No mathematical correlation is perfectly representative of 

this subregion. 

Turbulence is negligible in the viscous sublayer, and viscous effects are small in the inertial 

sublayer, but both effects are important in the buffer layer, with the maximum turbulent 

production occurring near 𝑦+ = 12, with the location slightly dependent on the Reynolds 

number, making modeling of the flow in the buffer region extremely difficult [26]. 

STAR-CCM+ provides many types of wall treatment, but the most common and suitable for a 

wide range of near-wall mesh densities is the two-layer all-y+ wall treatment, formulated with 

the desirable characteristic of producing reasonable answers for meshes of intermediate 

resolution, that is, when the wall-cell centroid falls within the buffer region of the boundary 

layer. Additionally, specific values (functions of wall distance) of the turbulence dissipation 

rate ε are imposed at the centroids of the near-wall cells. 

 

 

Figure 3.12: STAR-CCM+ two-layer all-y+ wall treatment [23]. 

 

 

Background mesh, overset mesh and mesh quality diagnostics 

A mesh is a representation of a larger geometric domain by smaller discrete cells. This domain 

can include real-world geometry, its content, and its surrounding environment. A mesh divides 

space into elements (or cells or zones) over which the equations can be solved, allowing the 

solution to be approximated over the larger domain. Within a model, element boundaries may 

be limited to lie on internal or external boundaries. Higher-quality (better-shaped) elements 

have better numerical properties, where "better" is defined by the general governing equations 

and the specific solution to the model instance. Creating a mesh usually requires the creation of 

a suitable simulation domain. Internal flow, such as a flow in a pipe, and exterior flow, such as 

the flow around and through an automobile, both require distinct approaches for building the 
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simulation domain, however, capturing very complicated geometry, such as that found in cars 

and aircraft, can be really challenging. 

 

 

Figure 3.13: visualization of a volume mesh (with clearly visible wake refinement) around a vehicle, 

created inside STAR-CCM+. 

 

Simcenter STAR-CCM+ solvers find solutions to physics equations at the locations defined by 

the mesh. For finite volume methods, Simcenter STAR-CCM+ computes values at cell centers. 

The surface and volume mesh can be generated automatically (an automatic mesh typically 

contains irregular mesh structures and is generated using tetrahedral, hexahedral, or polyhedral 

cells) or they can be user-guided. 

Accuracy and speed are in tension. Although decreasing the mesh size improves accuracy, it 

also increases computational cost. Both discretization and solution errors affect accuracy. Even 

when equations are solved accurately, a given mesh is a discrete approximation of the space 

and can only yield an approximate solution due to discretization error. For PDEs, several 

iterations over the full mesh are required for solution error. The calculation is stopped before 

the equations are completely solved. The choice of mesh element type affects both 

discretization and solution error. The overall number of elements as well as the shape of 

individual elements affect accuracy. The number of iterations required relies on the local 

solution value and gradient relative to the form and size of local elements, and the speed of each 

iteration grows (linearly) with the number of elements. A mesh of poor quality may miss key 

elements such as the fluid flow boundary layer. The discretization error will be significant, and 

the rate of convergence will be slowed; the solution may not even converge. This is why it is 

so important to always make sure that the mesh generated meets certain important requirements 
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that determine its overall quality. The most important parameters that measure the quality of a 

calculation grid are: 

• Skewness angle: is the angle that the normal of the face separating two adjacent cells 

forms with the straight line joining the two centroids of those cells and measures how 

much the geometric shape of a cell is dissimilar from the ideal shape. A well generated 

mesh exhibits cells each with skewness angle smaller than 85 degrees. Skewness angle 

equal to 0 indicates a perfectly orthogonal mesh. 

 

 

Figure 3.14: two-dimensional diagram of a face and the cell centroids on either side of the face [23]. 

 

• Face validity: an element with good face validity is characterized by external face 

normals pointing in the opposite direction to the centroid of the cell; if the face validity 

is poor then one or more normals point towards the centroid of the cell. This parameter 

has to be as close to 1 as possible, if less than 0.5 indicates the presence of negative 

volume cells and should be avoided. 

 

 

Figure 3.15: good cell validity (left) and bad cell validity (right). 

 

• Cell quality metric: an element with highly non-orthogonal faces has a low cell quality. 

If the cell quality is close to 1 it is of high quality, if close to 0 it is of low quality, 

generally with a value below 10-5 it is considered of poor quality. 
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Figure 3.16: good cell quality (left) and bad cell quality (right). 

 

• Volume change metric: is the ratio of the volume of the cell to the volume of the larger 

neighboring cell. To be acceptable, a cell must have volume change greater than 0.01. 

 

 

Figure 3.17: good volume change metric (left) and bad volume change metric (right). 

 

• Chevron Quality indicator: if the line joining the centroids of two adjacent cells does 

not pass through the common face, for those cells the Chevron indicator is 1, while the 

chevron indicator is 0 for cells where the opposite situation occurs.  

 

 

Figure 3.18: normal cells (left) and Chevron cells (right). 

 

• Aspect ratio: is the ratio of the maximum size to the minimum size of an element. Best 

meshing practices suggest that this number must be smaller than 5. 
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Figure 3.19: overset mesh region overlapped to the background mesh [27]. 

 

Overset meshes are used to discretize a computational domain by overlapping many separate 

meshes in an arbitrary way. They're particularly effective in situations involving large motions 

(such as those involving bodies that are close together or have intersecting parts), as well as 

optimization/parametric studies in which a geometry can be encased in an overset zone and 

moved around, orienting identical bodies in different relative positions or immerse different 

bodies in the same environment. A typical overset simulation has a background region 

enclosing the entire solution domain and one overset region that surrounds a body. However, 

as will be shown in the next paragraph, using the overset mesh approach for a simulation 

involving the modeling of fluid film demands certain requirements to be met. 

 

 

3.3.2. MULTIPHASE FLOW 

 

In fluid mechanics, multiphase flow is the simultaneous flow of materials with two or more 

thermodynamic phases within the same system where distinct interfaces exist between the 

phases. There are two types of topologies: dispersed flows and segregated flows. The former is 

made up of discrete particles, droplets, or bubbles spread throughout a continuous phase, 

whereas the latter is made up of two or more continuous fluid streams separated by surfaces. 

Simcenter STAR-CCM+ provides many distinct models to meet the requirements of these two 

categories of flow. The Fluid Film model predicts the dynamic characteristics of wall films 

using boundary layer approximations and assumed velocity and temperature profiles across the 
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depth of the film. Film transport is predicted using thin shells that lie across the surface of solid 

walls on which the film is formed. 

 

 

Figure 3.20: physics simulation tree with detail of Fluid Film model and Multiphase Interaction set up. 

 

 

Modeling fluid film 

In engineering practice, problems involving a thin film of fluid on solid boundaries are 

very prominent. Complex interactions between the fluid film and the surrounding environment 

might develop depending on the conditions. Further mathematical modeling is required to 

capture the intricacies of the created flows. Multiphase flows, where several fluids flow in the 

domain of interest, play an important role in variety of industrial applications and due to the 

presence of an interface over which there is a leap in fluid-fluid characteristics and the 
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interchange of mass, momentum, and heat between the phases, numerical simulations of such 

flows need to handle more complexity than single phase flow simulations. The Simcenter 

STAR-CCM+ two Eulerian Multiphase (EMP) Fluid Film model provides a mathematical 

description of the behavior of such films, being successfully used for modelling dispersed flows 

as well as multi-scale flow situations. 

 

 

Figure 3.21: fluid film formation and stripping process from a wall-gas interface [23]. 

 

A fluid film can be formed and removed as a result of many different phenomena. It is possible 

to initialize a layer of fluid film on the surface and specify its properties, or one can proceed by 

specifying an inlet from which the fluid film is emitted and an outlet from which it is removed. 

Other mechanisms of fluid accumulation on surfaces are droplet impingement (droplets carried 

by the air collide with surfaces, forming a liquid layer) and condensation from the gas phase. 

The fluid film can also be reduced in thickness or be removed through the following 

mechanisms: wave stripping (wave instabilities of the fluid film strips away fluid droplets), 

edge stripping (fluid droplets are stripped away from the surface because of sharp edges), 

evaporation and boiling. Similarly, the processes of generating and removing the fluid film 

from the surface can be modeled through the concepts of mass sources (and sinks). In the 

simulations carried out in this work, it was decided to generate the fluid film layer with an inlet-

outlet mechanism. 

The fluid film model solves mass, momentum, energy, species, and volume fraction transport 

equations. The model assumes that the film is thin enough to be approximated by the laminar 

boundary layer approximation and also assumes that the velocity profile across the film 

thickness follows a parabolic trend. The assumption of laminar boundary layer is violated if 

turbulence occurs in the film. 

The continuity equation that governs mass conservation within the fluid film is as follows: 
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𝜕

𝜕𝑡
∫ 𝜌𝑓
𝑉

𝑑𝑉 + ∫ 𝜌𝑓
𝐴

�⃗�𝑓 ∙ �⃗⃗�𝑑𝐴 = ∫
𝑆𝑢
ℎ𝑓𝑉

𝑑𝑉 (3.75) 

 

Where 𝜌𝑓 and �⃗�𝑓 are respectively the density and velocity of the fluid film, the quantity 𝑆𝑢 

represents the source term of the mass of fluid film per unit area and ℎ𝑓 symbolizes the thickness 

of the fluid film. The eq. (3.75) is used for the calculation of ℎ𝑓. 

The equation for the conservation of momentum of the film is expressed as shown below. 

 

 

𝜕

𝜕𝑡
∫ 𝜌𝑓�⃗�𝑓
𝑉

𝑑𝑉 + ∫ 𝜌𝑓
𝐴

�⃗�𝑓⊗ �⃗�𝑓 ∙ �⃗⃗�𝑑𝐴

= ∫ �̃�𝑓 ∙ �⃗⃗�
𝐴

𝑑𝐴 − ∫ 𝑃𝑓
𝐴

𝑑𝐴 + ∫ 𝑓𝑏 +
𝑆𝑚
ℎ𝑓𝑉

𝑑𝑉 

(3.76) 

 

Having indicated with �̃�𝑓 the viscous stress tensor within the film, 𝑃𝑓 the pressure, 𝑓𝑏 the body 

force vector (related to the surrounding fluid) and with 𝑆𝑚 the momentum source corresponding 

to the mass source 𝑆𝑢. 

Assuming that the normal components of the viscous and convective terms are negligible, the 

pressure distribution within the fluid film is obtained from eq. (3.77) as: 

 

 𝑃𝑓(𝜉) = 𝑝𝑖𝑛𝑡 − 𝑆𝑚 ∙ �⃗⃗� − 𝜌𝑓𝑓𝑏 ∙ �⃗⃗�(ℎ𝑓 − 𝜉) +∫
𝑑

𝑑𝑡
(𝜌𝑓�⃗�𝑓 ∙ �⃗⃗�)

ℎ𝑓

𝜉

𝑑𝜉 (3.77) 

 

Being 𝜉 the local coordinate normal to the wall and �⃗⃗� the wall surface unit vector pointing 

towards the film. 

For a multi-component film, the mass conservation equation for the ith species is: 

 

 
𝜕

𝜕𝑡
∫ 𝜌𝑓𝑦𝑖,𝑓
𝑉

𝑑𝑉 + ∫ 𝜌𝑓�⃗�𝑓𝑦𝑖,𝑓 ∙ �⃗⃗�
𝐴

𝑑𝐴 = ∫ (
𝜇𝑓

𝜎
)∇𝑦𝑖,𝑓 ∙ �⃗⃗�

𝐴

𝑑𝐴 + ∫
𝑆𝑖,𝑢
ℎ𝑓𝑉

𝑑𝑉 (3.78) 

 

Where 𝜎 is the molecular Schmidt number, 𝑦𝑖,𝑓 and 𝑆𝑖,𝑢 are the mass fraction and mass source 

(or sink) of the ith species respectively. 

A fluid film is not modeled directly within a regular Simcenter STAR-CCM+ region. Instead, 

Simcenter STAR-CCM+ uses a shell region, a surface domain in space that is effectively a two-
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dimensional one cell thick region with edges as boundaries, that represents the space within 

which the fluid film flows. An interface connects one shell region to a region or another shell 

region. When a shell region is built, an interface between the original fluid region and the shell 

region is automatically created at the boundary. 

 

 

 

Figure 3.22: shell region created on the underside of the side-view mirror of a Volvo vehicle. 

 

The strategies used by fluid film solvers are similar to those used by Segregated Flow solvers. 

Differences arises from the fact that these solvers deal with film equations on surfaces and film 

control volumes are dependent on the film distribution. 
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4. VEHICLE AERODYNAMICS 
 

 

 

Aerodynamics is defined as the branch of fluid dynamics that studies the dynamics of gases, 

mainly air, around solid bodies. With regard to automotive applications, the concept of 

Aerodynamics therefore refers to the study of the behavior of the air around and through the 

structure of the vehicle. For low vehicle speeds the airflow around the vehicle mainly affects 

acceleration while for high vehicle speeds, it affects fuel consumption and vehicle management. 

The interaction of the air flow with the vehicle can be of three types: air flux around the vehicle, 

air flux through the engine compartment, air flux through the transmission system and inside 

the engine [28]. While the first two are closely related, the third requires independent study. 

The optimization of the aerodynamics of the vehicle, i.e. the optimization of these three types 

of interaction, is aimed at reducing fuel consumption, ensuring greater and comfort of the 

vehicle (noise reduction, reduction of mud deposition on the vehicle, ventilation/cooling of the 

passenger compartment) and improve driving conditions. Here the study of the flow outside the 

vehicle that generates forces and moments that greatly affect the performance of the vehicle 

and its directional stability will be addressed. 

For a moving land vehicle, the effects of air viscosity are detectable only in the boundary layer, 

adjacent to the body of the vehicle. Outside the boundary layer the air can be treated as an 

inviscid fluid, which exerts a pressure force on the boundary layer itself. When the air reaches 

the rear of the vehicle it detaches. The existence of the boundary layer depends on the value of 

the Reynolds number: the formation of the boundary layer occurs for values of Re greater than 

104. The Reynolds number is influenced by the characteristic length and speed of the vehicle 

and the kinematic viscosity of the fluid. The motion of the fluid around the vehicle depends on 

the shape of the vehicle and the Reynolds number.  

Another important aerodynamic phenomenon is the formation of the vehicle's wake: when the 

air detaches from the rear of the vehicle, it generates the formation of a large turbulent region 

of low pressure known as the wake. The wake contributes to the formation of pressure drag, 

which reduces the performance of the vehicle. The influence of aerodynamic drag increases 

considerably with the speed of the vehicle, becoming more impactful on performance. 

The aerodynamics of vehicles on the road differ from the aerodynamics of aircraft for a few 

different factors: the shape of the vehicle is less tapered than that of an aircraft, the car is in 

close contact with the ground and does not travel in free air, the operating speeds are much 
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lower, the ground vehicle has less degree of freedom than an aircraft and its movement is less 

influenced by aerodynamic forces. 

The principles of aerodynamics are the basis of the design of vehicles on the road: the evolution 

that the shape of cars has undergone over the years has made it possible to improve the 

aerodynamics of the vehicle. While at the beginning of the twentieth century the shape of the 

vehicles resembled that of a boat or an airship, in the ‘20s the Hungarian Paul Jaray brought 

back to the automotive field the experience gained in the aeronautical field. Jaray formulated 

design principles for the aerodynamics of vehicles on the road, which were collected in a patent 

issued in 1927 [29]. 

 

 

Figure 4.1: boat shaped road vehicle (1900-1920). 

 

Jaray's patent spread rapidly and the design he promoted became more mainstream. Mercedes, 

Opel, Maybach, and numerous other brands, mainly German, made models using the Jaray 

patent, which then became a real formula. The biggest challenge of those times was the 

"Streamlining", which led to several possible forms for the vehicle. In this period much 

attention was paid to the phenomenon of separation of the boundary layer. 

 

 

Figure 4.2: Jaray’s patented model. 
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Between the 70s and the 90s much attention was paid to the optimization of details, conducted 

through the use of wind tunnels. New models such as the sedan and SUVs were designed and 

manufactured. Since the 90s, engineers have mainly focused on optimizing the basic shape of 

the vehicle using new tools such as CFD. The main objective of this period was to make the 

body of the vehicle more streamlined and characterized by the minimum value of the coefficient 

of aerodynamic drag. 

 

 

Figure 4.3: path lines around Volvo S80 using CFD. 

 

The aerodynamics of on-road vehicles influence numerous factors: from the car's energy 

efficiency related to aerodynamic drag, to the vehicle's environmental impact in terms of air 

pollution and noise. Good prediction of the aerodynamic characteristics of a vehicle on the road 

is a complicated task and requires the combination of both experimental and numerical 

techniques. The experimental and numerical tools currently available are mainly used for the 

reduction of  drag force. However, there are many other aerodynamic phenomena such as lateral 

wind stability, instabilities due to tunnel passages, on platforms or instabilities related to the 

transit of other vehicles and aeroacoustics, which require more sophisticated approaches for 

flow prediction [29]. In recent years there have been several advances in both experimental and 

numerical techniques used for the study of aerodynamics. As for numerical methods, time-

dependent simulations have been introduced. In general, both approaches are currently used to 

improve vehicle characteristics by controlling flow pattern or optimizing shape. The objectives 

behind the aerodynamic study conducted by the designers are the improvement of the vehicle's 

performance, the stabilization of the car in windy conditions, the improvement of comfort and 

visibility of the driver. Although the aerodynamic study incorporates several aspects, the 

present thesis work is focused on the analysis of the interaction of the flow with the external 

body of the vehicle in order to reduce the resistance of the car under normal working conditions. 
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4.1. WIND TUNNELS 
 

 

Although the ideal methods for the aerodynamic study of a vehicle are the one that measure 

performance when the car is directly on the road, with which the rotation of the wheels, the 

flow in the underbody and the natural atmospheric wind are considered, these are hindered by 

several problems. The main problem lies in measuring the drag separately from the rolling 

resistance, friction resistance and mechanical losses of the vehicle. Moreover, the equipment 

required to carry out an analysis on the road involves many practical problems. The only two 

alternative methods for conducting aerodynamic evaluations are computational fluid dynamics 

(CFD) and experimental wind tunnel tests. 

The wind tunnel is a laboratory tool used to study the flow of a fluid (air for the problem under 

consideration) around a body, simulating its interaction in a plausible way. The measurements 

conducted in the wind tunnel concern the local and global speeds, pressure, temperature, and 

forces exerted by the fluid on the body. In wind tunnels the stationary body is hit by a flow at 

the speed required for the specific object to be tested. For economic reasons often the models 

used are scale reproductions. The greatest difficulty of this approach is linked to the 

inconsistency of the Reynolds numbers on the real application and on the scaled model. The 

measured forces are not simply multiples of the forces that would be measured with the original 

scale, due to the diversity of the Reynolds number. So, keeping in mind the equation that 

describes this parameter, the methods used to solve this drawback are to increase the speed of 

the flow or use pressurized wind tunnels, to increase the density of the air and therefore keep 

the Reynolds number constant. Wind tunnels are divided into two main categories: open-circuit 

tunnels and closed-circuit tunnels. A further classification distinguishes closed-loop tunnels as 

a function of the flow rate in the test chamber or as a function of the Mach number. Thus, there 

are: incompressible subsonic galleries (if the Mach is between 0 and 0.3), compressible 

subsonic galleries (if the Mach is between 0.3 and 0.8), transonic galleries (if the Mach is 

between 1.2 and 5), hypersonic galleries (if the Mach of the flow is greater than 5). 

 

 

Open-circuit wind tunnel 

Open-circuit tunnels are typically made using convergent-divergent nozzles. The entrance 

to the wind tunnel is represented by a circular or rectangular section in which devices are placed 
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for the quality control of the incoming flow. It follows a converging duct that ends at the initial 

point of the test chamber, a region with a constant section representing the nozzle throat. In the 

test chamber is placed the prototype to be subjected to the aerodynamic study. The prototype 

will then be subjected to speeds of the order of 50-70 m/s. Subsequently, the fluid passes 

through a divergent section in which fans connected to an electric motor are positioned. The 

fans transfer the kinetic energy generated by the motor to the fluid which is then recalled in the 

test section. These components are followed by another diffuser aimed at compressing the fluid 

and an air outlet section to the external environment. The position of the fans downstream of 

the test section is due, in addition to the need to provide kinetic energy to the flow, to the fact 

that the fans generate vortices and turbulence downstream that could alter the measurements 

made in the throat section. The disadvantages for this type of configuration are the noise and 

loss of kinetic energy at the discharge of the fluid into the environment. The main negative 

factor, however, is that the test chamber is closed and therefore the pressure inside it is lower 

than the pressure outside. Therefore, the test chamber must be perfectly sealed to avoid 

infiltration of fluid from the outside which would cause appreciable undesired alterations of the 

measurements [30]. 

 

 

Figure 4.4: open-circuit wind tunnel [30]. 

 

Despite several decades of development, the wind tunnel still presents some problems and 

approximations, because of which the flow around the body is different from the real condition 

due to various factors, including blocking effects, non-parallel flow, and interaction with the 

support structures. A CFD analysis can be used with the same approach to simulate a wind 

tunnel model.  
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Closed-circuit wind tunnel 

Closed-circuit tunnels are equipped with the same components as open-circuit tunnels. The 

only difference is that the flow is not expelled outside but is recirculated internally. The 

advantages compared to the open solution lie in the possibility of modifying the characteristics 

of the flow in terms of pressure, temperature, humidity, and viscosity and in being able to use 

an open or semi-open test chamber, ensuring a considerable simplification in the positioning of 

the prototypes to be subjected to experimental tests. However, closed-loop tunnels must be 

equipped with a heat exchanger and radiators capable of cooling the fluid because the flow 

undergoes considerable heating that could alter the aerodynamic measurements. 

 

 

Figure 4.5: closed-circuit wind tunnel [30]. 

 

 

4.2 AERODYNAMIC FORCES ON A VEHICLE 

 

 

To deal with aerodynamic phenomena it is not possible to disregard one of the most 

important principles of fluid dynamics represented by Bernoulli's theorem. Bernoulli's equation 

(eq. (2.45)) represents a simplified model of inviscid flow of an incompressible fluid in steady 

and irrotational motion. Bernoulli's equation allows to correlate two fundamental quantities in 

the field of aerodynamics: the speed of a fluid and its pressure. Imposing the above boundary 
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conditions, Bernoulli's principle states that the sum of kinetic energy, pressure energy and 

potential energy along a current line is a constant quantity. Considering two points at the same 

height and thus imposing the negligible nature of the potential contribution, the eq. (2.45) can 

be simplified as: 

 

 𝑃 +
1

2
𝜌𝑢2 = 𝑐𝑜𝑛𝑠𝑡 (4.1) 

 

in which the first term expresses a local static pressure, and the second term expresses a pressure 

of a dynamic nature, that is, linked to the speed of the fluid. It can be emphasized that while the 

static pressure of a fluid is the pressure exerted by it in resting conditions, the dynamic pressure 

is a measure of the kinetic energy of the fluid per unit volume, which represents the pressure 

exerted by a fluid due to its kinetic energy. From the relationship of eq. (4.1) it is immediately 

deducible how as the speed of the fluid increases, its pressure decreases (and vice versa) so that 

the sum of the two contributions is kept constant. This sum represents a total pressure, which is 

constant along a flow line (fluid vein of air flow running through a car): 

 

 𝑃𝑠𝑡𝑎𝑡 + 𝑃𝑑𝑦𝑛 = 𝑃𝑡𝑜𝑡 = 𝑐𝑜𝑛𝑠𝑡 (4.2) 

 

Moreover, at a narrowing of the passage section, by virtue of the constancy of the volumetric 

flow rate (as established by the continuity equation under the hypothesis of flow stationarity 

and incompressibility), the speed of the fluid increases, inevitably generating a decrease in static 

pressure. 

 

 

Figure 4.6: trends of static pressure and velocity of air around the vehicle body. 
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Away from the vehicle the flow has an undisturbed speed. In the impact with the car, this speed 

is canceled on a point called stagnation point. The flow follows the profile of the vehicle 

accelerating until it reaches its maximum speed at the maximum thickness of the vehicle. After 

that the flow decelerates. The trend of the static pressure of the air is exactly mirrored to the 

trend of its speed. 

The pressure coefficient is an important parameter to be evaluated in an aerodynamic study 

because it allows to describe the pressure trend along the vehicle profile. During the modeling 

phase of the vehicle it is extremely useful to evaluate any pressure changes due to geometric 

anomalies of the car body. The pressure coefficient (CP) is expressed by the following relation: 

 

 𝐶𝑃 =
𝑃 − 𝑃∞
1
2𝜌𝑢∞

2
= 1 − (

𝑢

𝑢∞
)
2

 (4.3) 

 

Where P and u are respectively the local static pressure and the local velocity, 𝑃∞ and 𝑢∞ are 

respectively the static pressure and the velocity of the undisturbed current, i.e. the fluid 

(upstream or downstream) away from the vehicle. The value of the pressure coefficient can take 

values ranging from 0 to 1: 

• is equal to 0 at any point in the flow field sufficiently far from the vehicle so as not to 

be altered by the vehicle; 

• is equal to 1 at the points where the flow is at rest, called stagnation points; 

• is between 0 and 1 if the air flow is characterized by a velocity gradually lower than that 

of the vehicle, that generates areas of overpressure;  

• is negative in areas where the static air pressure is lower than the undisturbed pressure. 

This occurs at the points of circumvention of the car body, at which there is a very 

marked curvature of the profile, which leads to a strong acceleration of the flow. 

When a solid body is hit by a flow, the pressure actions (normal to its surface) and the friction 

forces (tangent to its surface) that fluid threads exert on it, contribute to a single force called 

aerodynamic resultant. This force can be broken down into 3 components (fig. 4.7): lift force 

(acting along the z-axis), drag force (acting along the x-axis), deviance (due to lateral winds or 

gusts of wind along the y-axis) [31]. Only the first two components will be specifically analyzed 

here since the numerical simulations of interest are conducted for a vehicle under normal 

conditions. 
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Figure 4.7: aerodynamic forces acting on a car body. 

 

In the automotive sector, aerodynamic resistance is defined as the force that the air exerts in a 

horizontal direction by opposing the advancement of the vehicle. The aerodynamic resistance 

is proportional to the speed of a laminar flow and to the square of the speed of a turbulent flow. 

The expression of the aerodynamic drag force is as follows: 

 

 𝐷 =
1

2
𝜌𝑢∞

2 𝐴𝐶𝐷 (4.4) 

 

Where 𝜌 is the density of the air, u is the velocity of the flow, A is the reference surface (frontal 

area of the vehicle), and CD is the drag coefficient. This relationship shows that aerodynamic 

drag is proportional to the square of the velocity. The drag coefficient is a function of both the 

shape of the vehicle and the Reynolds number and is expressible through the relation obtained 

from the eq. (4.4). 

 

 𝐶𝐷 =
𝐷

1
2𝜌𝑢∞

2 𝐴
 (4.5) 

 

The drag coefficient regulates the aerodynamic efficiency of the vehicle, i.e. fuel consumption 

and speed performance. As far as a vehicle is concerned, aerodynamic  resistance can be traced 

back to four types: skin friction drag, pressure drag, vortex-induced drag and interference drag 

[28]. 
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The skin friction drag is a function of the Reynolds number. In fact, the skin friction drag is due 

to the effect of viscous forces in the boundary layer, the origin of which is linked to the non-

ideality of the fluid. The thickness δ of the boundary layer of the latter quantifies its effect: the 

greater the thickness and the greater the resistance that meets the air near the body of the vehicle. 

This results is a decrease in the penetrability of the vehicle into the air. In a laminar boundary 

layer there is a lower resistance to flow than in a turbulent boundary layer. The laminar 

boundary layer develops at the leading edge of the vehicle profile. At a certain distance from 

the leading edge the laminar boundary becomes unstable undergoing a transition to a turbulent 

regime that causes a sudden increase in thickness. The goal is therefore to make the body of the 

car in such a way as to delay as much as possible the transition from one regime to another. In 

general, the contribution of skin friction drag, being linked to the presence of the boundary layer 

in which the viscous effects of the fluid are not negligible, is greater the more delayed is the 

detachment of the flow. 

Pressure drag is the resistance linked to the trend of pressures on the body of the vehicle due to 

the presence of the boundary layer. At the point of anterior stagnation, the point from which the 

boundary layer develops, the flow has zero velocity and maximum pressure. In circumventing 

the body the air accelerates and according to Bernoulli's theorem the pressure decreases to a 

minimum value, which is reached in the thickest section of the body. Then follows a pressure 

recovery zone that should theoretically extend to the point of rear stagnation. But due to the 

progressive increase in the thickness of the boundary layer along the body, it is possible that 

the reunion of the flow to another stagnation point will not occur. This involves the separation 

of the flow at the rear of the vehicle which results in the creation of vortices, which contribute 

to the resistance to advancement. Therefore, because of the lack of complete recovery of the 

pressure, a downstream pressure lower than the upstream will be detected, producing a greater 

resistance to the advancement of the vehicle. The pressure or shape resistance is greater the 

larger the front area of the vehicle and the thickness of the boundary layer and it is the primarily 

responsible for the formation of the vehicle's wake. 

Vortex-induced drag is generated by lift or downforce. The lifting or crushing of the vehicle 

occurs as a result of the presence of a pressure differential between the lower and upper surface 

of the vehicle. Since, in general, a flow naturally evolves in the direction of mitigation of any 

differential, the presence of a certain ΔP between the two parts of the vehicle generates a 

tangential vorticity between the two surfaces that diverts the flow lines (fig. 4.8). The energy 

needed to generate these fluid structures, called C-pillar vortices, translates into greater 

resistance. 
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Interference drag is due to the fact that the individual components of a car have their own 

resistance. When the various components are combined to form the vehicle, the total resistance 

of the vehicle is always greater than the resistance of the individual parts. It is due to 

imperfections of manufactures on the body, joints, connecting elements and the coupling of the 

fairing and wheel fairings to the body. 

Among the various contributions to the resistance to advancement for a vehicle on the road the 

most impactful is represented by the pressure drag, followed by friction drag. 

 

 

Figure 4.8: C-pillar vortices on a car body [28]. 

 

Lift is defined as the aerodynamic force that acts in a vertical direction with respect to the 

direction of the relative wind. Such a force is responsible for the take-off of an aircraft. The 

shape of the wings connected to the central part of the aircraft, in the take-off configuration, 

guarantees a greater passage of air above the airfoil rather than below. This generates a strong 

depression in the lower part of the wing. Therefore, the airfoil develops an upward direct force 

that allows the take-off. In road vehicles, this force worsens stability at high speeds, by virtue 

of a higher top speed. Downforce involves the opposite phenomenon and in vehicles on the 

road it represents that vertical force that, through the tires, exerts a crushing force towards the 

ground. The greater the load that acts vertically on the tires, the greater the grip of the vehicle. 

Lift and downforce are primarily responsible for the stability of the vehicle. 

 

 𝐿 =
1

2
𝜌𝑢∞

2 𝐴𝐶𝐿 (4.6) 

 

Where CL is the lift coefficient. As it was done for the eq. (4.5), the lift coefficient can be easily 

derived from the above expression. 
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 𝐶𝐿 =
𝐿

1
2𝜌𝑢∞

2 𝐴
 (4.7) 

 

Methods to reduce drag 

There are many ways a designer can improve the performance of a vehicle by acting on its 

geometry. The most common methods to reduce the drag on a car body are the use of vortex 

generators, diffuser, rear fairing (fastback) and streamlining [28]. A vortex generator (VG) is 

an aerodynamic device made out of a tiny vane that is commonly attached to a lifting surface 

(or airfoil, like an airplane wing) or a wind turbine rotor blade. VGs can also be mounted to 

parts of an aerodynamic vehicle, such as the fuselage of an airplane or the body of an 

automobile. When the airfoil or body moves in relation to the air, the VG creates a vortex, 

which delays local flow separation and aerodynamic stalling by removing some of the slow-

moving boundary layer in contact with the airfoil surface, thus improving the effectiveness of 

flaps, elevators, ailerons, and rudders. 

One of the aerodynamic features that contributes to the ground effect is the diffuser. Under the 

moving automobile body, the diffuser creates a low-pressure zone. A racing car's diffuser 

accelerates and reduces the pressure of the airflow beneath the car, resulting in a pressure 

difference between the car's upper and lower surfaces. When a car is moving, the air flow 

passing through the lower part of the front end accelerates, but when it reaches the diffuser, it 

encounters a low-pressure zone and expands back to normal speed, providing more downforce 

and reducing resistance than a wing. This means greater grip given by the aerodynamic 

downforce, a trick that allows the car to go through a curve at a higher speed. The downforce 

produced makes it possible to improve the traction force of the tires. 

A fastback is a car body style whose roofline slopes continuously down at the back. It is a form 

of back for an automobile body consisting of a single convex curve from the top to the rear 

bumper. Fastbacks succeed in the task of reducing the drag on a vehicle by avoiding the 

boundary layer separation. 

A body is said to be streamlined if a conscious effort is made to align its shape with the 

anticipated streamlines in the flow. Streamlined bodies such as race cars and airplanes appear 

to be contoured and sleek. Otherwise, a body (such as a building) tends to block the flow and 

is said to be bluff or blunt. Usually it is much easier to force a streamlined body through a fluid, 

and thus streamlining has been of great importance in the design of vehicles and airplanes. 
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5. AUTOMATED DESIGN EXPLORATION 

WORKFLOW 
 

 

 

In this thesis has been presented so far, according to the methodology proposed in this work, 

the technological tools and software essential to perform a complete parametric analysis on a 

geometric model of interest. ANSYS, in the role of RBF Morph hosting platform, firstly 

performs the task of product integration, putting at the service of the morphing tool the GUI of 

ANSYS Mechanical through its ACT (Application Customization Technology) features; 

secondly, it provides the tools, algorithms and methods necessary to meticulously explore a 

design space setting up a design of experiment (DOE) table. The commercial morpher RBF 

Morph, through a vastly intuitive GUI, lets the user set-up a customized geometry 

parametrization and thus generate each shape variation of the geometry based on the prepared 

DOE table. STAR-CCM+ provides the working environment in which the high-fidelity CFD 

numerical simulations decided during the parametric analysis preparation phase are performed. 

The key feature that allows STAR-CCM+ to receive input morphing instructions is its API 

(Application Programming Interface) functionality: thanks to the writing of custom user-

defined functions (UDF) it is possible to manage input and output information from the solver. 

The UDF created allow to appropriately modify the geometries through the update of the 

coordinates of the grid vertices. 

The prototype demonstration tool developed in this work makes use of each of the 

aforementioned software and their APIs, integrating and interfacing them with each other by 

means of C++ user coded applications, and automating the entire process through a low-level 

scripting of the instructions provided to the machine that performs the operations. This 

procedure achieves the objective performing a fully automated parametric CFD analysis while 

integrating disjointed software solutions and proving the feasibility of the workflow by testing 

it with practical applications in the automotive sector. The entire implemented workflow is 

represented schematically in fig. 5.1. 

 



84 
 

 

Figure 5.1: flowchart of the automated design exploration workflow. 

 

The first step of the design exploration process takes place within RBF Morph ACT Extension. 

The software is integrated in the ANSYS Mechanical interface sharing with it the interaction 

logics such as the selection tools and named selections, and is located in the mechanical three 

inside the project as shown in fig. 5.2.  

 

 

Figure 5.2: RBF Morph ACT integration inside ANSYS Mechanical tree. 
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The modeling logic for the RBF Morph ACT Extension is hierarchical, allowing for the 

prescription of displacements at mesh nodes using appropriate shape modifiers (as discussed in 

chapter 3.2.2). The hierarchical working logic implemented in the morphing tool considers the 

employment of several children to manage complex mesh alterations. Each child in the RBF 

Morph tree is a shape modifier that acts on its selection and propagates it to its father.  

 

 

Figure 5.3: expansion of the RBF Morph set-up tree. 

 

Before parameterizations are applied to geometry, a support mesh is generated. For each RBF 

Source the resulting behavior is interactively previewed for checking the modifications and, 

once the set-up is completed, each shape modifiers gets parametrized and sent to ANSYS 

Workbench. 

 

 

Figure 5.4: parametrization of the RBF shape modifiers. 

 

Here, a DOE table is generated using an Optimal Space-Filling algorithm in order to obtain as 

much information as possible on the behavior of the entire parametric space, establishing a 

maximum of 25 automatically generated shape variants. The range of interest of each shape 

parameter has been decided by evaluating the mesh in each of the extremes of validity and 
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making sure that the mesh remains valid and that it still maintains, following the morphing 

action, an acceptable quality with respect to the requirements on skewness, face validity, cell 

quality, volume change, etc. At this point, for each shape variant, a file (.pts) containing all the 

morphing data (number, coordinates, and displacements of source points) is generated and 

exported.  

 

 

Figure 5.5: detailed diagram of the operations performed inside ANSYS environment. 

 

Once all the morphing files have been generated and exported, to complete the process of 

updating and analyzing the new geometry, it is necessary to transfer the information contained 

in them to the STAR-CCM+ fluid dynamic numerical solver. To do this, an adequate calculation 

grid must first be created on the baseline model, and clearly a CFD study must be performed 

on the initial model (the results of which are to be used as a benchmark for subsequent 

simulations). Then, the grid must be exported from the solver, which means that the coordinates 

of all the vertices that make up the volume mesh must be exported. The coordinates of the 

vertices are then subjected to the morphing action making calls to functions (Purge, Solve, 

PrintOutput, Morph) contained in the RBF libraries. To accomplish this, a C++ code has been 

developed, the basic steps of which are described in more detail below: 

1. reading of data stored in the morphing files: the coordinates and displacements of the 

RBF centers (referred to the supporting mesh) are read by the code and stored in a 

dynamic array; 
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2. purging of nonessential source points: the code makes a call to the Purge function, 

which checks the source points stored in the array and discards those that are below a 

certain minimum distance from the nearby points (so as to not unnecessarily burden the 

calculation); 

3. encapsulation volume generation: to ensure a good quality of the morphing action and 

avoid distant vertices from being affected by the shape changes applied to the surface 

of the geometry, through the Encap function a grid of additional zero displacement 

source points is generated around the geometry, spaced apart from each other at equal 

distance; 

4. RBF problem solution: Source point coordinates and displacements are provided as 

arguments to the Solve function, which solves the RBF problem; 

5. reading of data stored in the baseline mesh file: the coordinates of the vertices 

(referred to the baseline mesh built inside of STAR-CCM+) are also read and 

memorized in a dynamic array; 

6. mesh morphing: the baseline mesh coordinates are fed to the Morph function and the 

mesh morphing is finally achieved; 

7. writing to files of the new coordinates of the mesh: at the end of the calculation, the 

coordinates (x, y, z) resulting from the morphing process are stored on a new file. 

The encapsulation operation performed in step 3 involves creating a box around the geometry 

to be morphed, defined by the user by providing the spatial coordinates of an origin (box edge) 

and the three dimensions of the box in the x, y, and z directions. Once the spatial position of the 

encapsulation volume is defined, the Encap function places a user-defined number of zero 

displacement source points on the external surface of the box. 

The operation performed in step 5 of the C++ code is made possible by a previous export of the 

coordinates of the volume mesh generated within STAR-CCM+. This is done by means of the 

software's API features, which allows the user to visit the nodal positions of all the vertices of 

the volume mesh and act on them in various ways through user code. User code allows 

Simcenter STAR-CCM+ to be customized with functions written in a compiled language. User 

code takes the form of one or more user libraries that are attached to Simcenter STAR-CCM+, 

each of which contains one or more user functions and a library registration function. When a 

user library has been attached, its user functions are available for use and are provided in drop-

down lists for any operation that needs them. In STAR-CCM+, user functions and library 

registration functions can be coded in any language, as long as that language is able to bind like 

C functions or Fortran subroutines. Therefore, C++ was used to write user-defined functions 
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(UDFs) for the purpose of exporting the coordinates required to perform the morphing. These 

functions were then compiled and linked together generating a dynamic linked library (DLL). 

Finally, the DLL was loaded into STAR-CCM+ and the UDFs were made accessible to the 

simulation file. At the end of the morphing phase, the same method based on UDFs is employed 

to transfer the morphed coordinates back to STAR-CCM+. 

 

 

Figure 5.6: detailed schematic of the operations performed by C++ user code. 

 

Each C++ code was compiled using Microsoft Visual Studio Community 2022. When 

compiling the user-defined functions and linking them together to create the DLL, the x64 

Native Tools Command Prompt has been crucial, since dynamic libraries need to be compiled 

in 64 bits and at a low level to be correctly recognized by STAR-CCM+. A more detailed guide 

on how to create and use UDFs inside STAR-CCM+ is given in chapter 8.2. 

When the numerical solver receives the morphing instructions, the geometry can be updated by 

moving each of the nodes that make up the mesh. To perform this morphing operation internally 

to STAR-CCM+, as described above, a UDF is used. Because the solver interprets this update 

of the nodal points of the mesh as if it were a movement of the model, STAR-CCM+ requires 

the simulation to be set to Unsteady mode before executing the morphing. Therefore, the 

updating of the numerical model takes place through a fictitious time step, operated with the 

foresight to keep all the solvers off, avoiding advancing the solution. This functionality is called 

User-Defined Vertex Motion and allows to set a displacement or velocity for every vertex 

position in the simulation. It is typically intended for use in cases where the other motions 

cannot give the precise control that is required over the mesh movement. 
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After updating the model, the simulation file is almost ready to launch the CFD analysis. A 

custom Java Macro called “CFD_set_up.java” is then activated. The macro performs the 

following tasks: 

1. edit the settings to prepare the simulation to iterate; 

2. run the simulation; 

3. end the iterations when the simulation stopping criteria are met; 

4. export the results. 

Java macros are a valuable tool to automate repetitive tasks and to work more efficiently. They 

can be recorded through the GUI of STAR-CCM+, but most of the times a manipulation of the 

code is recommended to customize and extend their functionalities. 

 

 

Figure 5.7: detailed schematic of the operations carried out by the Java Macro. 

 

The set of operations described so far, starting from reading the morphing files and ending 

exporting the results of the fluid dynamics simulation from STAR-CCM+, is enclosed in a script 

described by a single batch file in MS-DOS, able to automate the entire parametric analysis 

through a series of commands to be executed by the command-line interpreter of a Microsoft 

Windows system. The entire parametric analysis is then performed in batch mode, and upon its 

completion, the log file of the procedure is memorized and stored. The log contains all the 

information on the actions performed during the execution of the workflow and in addition to 

allowing the user to monitor the progress of the analysis in real time, it is an excellent debugging 

resource. 

 

 

 



90 
 

6. APPLICATIONS 
 

 

 

This chapter shows the results obtained applying the workflow previously presented. The 

implemented procedure was put to the test on two technological applications, both of which 

were primarily demonstration. The initial application involves optimizing the aerodynamics of 

the ASMO (Aerodynamics Studien Model) idealized car body shape, which is publicly 

available, with the goal of lowering the drag coefficient (CD). The second application, 

developed in conjunction with Volvo Cars and RBF Morph, is a design investigation of a detail 

located around the lens of a camera mounted below a side-view mirror of a Volvo vehicle. The 

goal of the study is to reduce the thickness of the fluid film layer deposited on the camera in 

adverse weather and soiling environments. 

 

 

 

6.1. AERODYNAMICS STUDIEN MODEL 

(ASMO) 
 

 

External car aerodynamics research is critical for overall car efficiency and ride stability 

and is a crucial component of successful automotive design. The flow over car geometries 

shows three dimensional and unsteady turbulent characteristics. Around the bluff body, vortex 

shedding, flow reattachment, and recirculation bubbles can also be detected. These phenomena 

have a significant impact on the lift and drag coefficients, which are critical for ride stability 

and energy efficiency. In this chapter, The aerodynamic of the ASMO geometry is studied and 

optimized. 

 

 

6.1.1. BASELINE MODEL 

 

ASMO geometry is a model created by Daimler-Benz in the ‘90s to investigate low drag 

bodies in automotive aerodynamics and testing of CFD codes with a geometry not related to 
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the development of Mercedes cars. Wind tunnel experiments were made by both Daimler-Benz 

and Volvo [32]. The shape consists of a square-back rear, smooth surfaces, a boat tail, an 

underbody diffuser, and no pressure-induced boundary layer separation. The geometry 

(presented in fig. 6.1 and fig. 6.2) was studied by performing a stationary fluid dynamics 

simulation of the flow around the model placed in a wind tunnel (fig. 6.3), the dimensions of 

which were chosen to ensure that the most relevant fluid dynamic effects and fluid structures 

are captured inside it. To accommodate the vehicle inside, the best practice states that it is 

necessary to leave a minimum space ranging from two to four vehicle sizes upstream and from 

six to eight measures downstream. Accordingly, the wind tunnel has a length of 8 m, a 

horizontal width of 2 m, and develops in height of 1.4 m. 

 

 

Figure 6.1: ASMO (Aerodynamics Studien Model) idealized car body shape. 

 

 

Figure 6.2: ASMO idealized car body shape geometrical projections; measures are expressed in 

millimeters. 
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Figure 6.3: wind tunnel geometry and boundary conditions. 

 

The mesh on the model was made with 1,107,966 hexahedral elements and 1,293,064 vertices, 

taking advantage of the bilateral symmetry of the vehicle. The calculation grid is denser near 

the surface of the vehicle and less dense elsewhere. This allows to grasp with more accuracy 

the phenomena that occur near the model rather than far from it, and to limit the overall number 

of elements of the mesh, reducing the computational cost required for CFD analysis. To capture 

the wake of the vehicle, a mesh refinement has been created spanning approximately 60% of 

the car length and spreading with a 20° angle. At the entrance to the wind tunnel, the boundary 

condition was set with a inlet velocity of the fluid (air) of 50 m/s, while at the outlet a zero-

reference pressure (0 Pa) was set. No-slip conditions are set for the bottom and car surfaces. 

The air evolving in the tunnel was modeled as an ideal gas (𝜌 = 1.225 𝑘𝑔 𝑚3⁄ ), and since the 

maximum velocities reached are well below the Mach threshold of 0.3, the fluid was reasonably 

considered incompressible. The numerical flux solver has been set by selecting a two-layer 

realizable k-ε turbulence model with second-order upwind convection scheme and a segregated 

flow solver has been employed. The steady state simulation has been terminated when the 

residuals (continuity, momentum, energy, turbulent kinetic energy and turbulent dissipation 

rate) reached convergence. The aerodynamic drag and downforce on the vehicle were 

calculated and the respective coefficients were derived. Numerical values obtained for the drag 

coefficient (CD) forces and lift forces (CL) are 0.143 and -0.035. Fig . 6.5 displays the pressure 

and velocity fields at the end of the CFD analysis. In fig. 6.6, the pressure coefficient is shown. 
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Figure 6.4: mesh build around the model (top) with detail of thin prism layers close to the surface 

(bottom left) and refinement in the proximity of the wheels (bottom right).  

 

 

Figure 6.5: flow field pressure (top) and velocity magnitude (bottom) distributions. 
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It can be observed that the values of CD and CL obtained in the CFD analysis are in good 

agreement with the drag coefficients obtained from experimental wind tunnel tests (Volvo and 

Daimler Benz), and with the drag and lift coefficients obtained from other previous studies in 

the literature (Aljure et al. (2014) [33], Tsubokura et al. (2009) [32] and Perzon et al. (2000) 

[34]). The drag coefficient of 0.143, calculated as the sum of the pressure contribution and the 

friction contribution, is only slightly lower than those measured by Volvo (CD = 0.158) and 

Daimler Benz (CD = 0.153). This underestimation of the coefficient ranging from 6.5% to 9.5%, 

is probably due to the choice of mesh, which in some points of the geometry could benefit from 

a refinement (i.e. around the wheels). The value of the lift coefficient appears equally consistent 

with the results of Aljure (-0.023 ≤ CL ≤ -0.058 obtained by applying several different 

turbulence models [33]). The roof and the under body pressure coefficient along the symmetry 

plane of the vehicle confirms the previous considerations. 

 

 

 

Figure 6.6: pressure coefficient for car roof and under-body (top); pressure coefficient in the under-

body (bottom left) and in the roof (bottom right) from Aljure et al. [33]. 
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Figure 6.7: streamlines on the symmetry line of the ASMO vehicle. 

 

 

6.1.2. SHAPE PARAMETRIZATION 

 

The way the ASMO geometry is made, it is already an extremely streamlined shape in itself. 

However, an improvement in its aerodynamic performance is definitely possible by altering 

some aspects of the geometry. The parameterization of the shape was carried out using the mesh 

morphing software RBF Morph, introducing three shape parameters [35] [36](fig. 6.8): 

• Boat Tail; 

• Roof Drop; 

• Front Spoiler. 

 

 

Figure 6.8: visualization of the selected shape parameters. 

 



96 
 

The most sensitive aspect of the shape parameterization is the design of the shape parameters 

using RBF Morph's graphical user interface, which entails defining a set of rules for generating 

source points and extracting information from the mesh itself. 

 

Boat Tail parameter 

This parameter consists of a variation of the lower rear end of the vehicle, acting on the 

width of the back-rear. The variation in shape obtained with amplifications and reductions of 

this parameter was obtained by rigidly translating RBF centers located on the left and right edge 

of the back of the car. This parameter was varied between a minimum of -0.01 m and a 

maximum of +0.02 m. In fig. 6.9 the implementation of the shape parameter is shown through 

a preview display in RBF Morph, highlighting in red the source points in the initial positions 

and in blue the source points following the morphing action.  

 

 

Figure 6.9: preview of the Boat Tail morphing on the ASMO body shape. 

 

 Lower limit [m] Upper limit [m] 

Boat Tail (left side) -0.01 +0.02 

Boat Tail (right side) -0.02 +0.01 

Table 6.1: lower and upper limits of the Boat Tail parameter. 
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Roof Drop parameter 

As in the previous case, this parameter acts on the rear end of the vehicle. The Roof Drop 

parameter controls the inclination of the rear roof, moving up or down a set of RBF centers as 

shown in Fig. 6.10. The range of variation of this parameter, as shown in table 6.2, is between 

a minimum of -0.02 m and a maximum of + 0.01 m. 

 

 

Figure 6.10: preview of the Roof Drop morphing on the ASMO body shape. 

 

 Lower limit [m] Upper limit [m] 

Roof Drop -0.02 +0.01 

Table 6.2: lower and upper limits of the Roof Drop parameter. 

 

Front Spoiler parameter 

The shape parameter named Front Spoiler controls the shape of the front section of the 

vehicle model, moving the RBF centers along a direction oriented with an angle of 20° with 

respect to the transverse direction of the vehicle. The lower and upper limits for the variation 

of this parameter are respectively -0.0025 m and + 0.02 m. Fig. 6.11 displays the RBF set-up 

on the ASMO model for this final shape parameter. 
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Figure 6.11: preview of the Front Spoiler morphing on the ASMO body shape. 

 

 

 Lower limit [m] Upper limit [m] 

Front Spoiler -0.0025 +0.02 

Table 6.3: lower and upper limits of the Front Spoiler parameter. 
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Figure 6.12: comparison between baseline (left) and generic morphed geometry (right) with focus on 

the rear end of the vehicle.  

 

 

Figure 6.13: comparison between baseline (left) and generic morphed geometry (right) with focus on 

the front of the vehicle. 

 

 

Each of the shape modifiers listed and described above was parameterized and sent to the 

ANSYS Workbench. Based on the variability ranges set for each parameter and applying an 

Optimal Space-Filling algorithm to sample the design space, a DOE table (table 6.4) was 

created. The table was generated by choosing a number of shape variants equal to 25, which 

when added to the baseline geometry amount to a total of 26 shapes evaluated at the end of the 

parametric analysis.  
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Design 

Number 

Boat Tail (left) 

[mm] 

Boat Tail (right)  

[mm] 

Roof Drop  

[mm] 

Front Spoiler  

[mm] 

1 18,20 -18,20 -8,60 6,95 

2 11,00 -11,00 -17,00 9,65 

3 8,60 -8,60 4,60 17,75 

4 12,20 -12,20 9,40 10,55 

5 -2,20 2,20 -1,40 18,65 

6 0,20 -0,20 1,00 -2,05 

7 1,40 -1,40 -19,40 3,35 

8 -1,00 1,00 8,20 13,25 

9 7,40 -7,40 -9,80 19,55 

10 2,60 -2,60 -18,20 14,15 

11 9,80 -9,80 5,80 0,65 

12 17,00 -17,00 -13,40 15,95 

13 6,20 -6,20 2,20 7,85 

14 13,40 -13,40 -15,80 1,55 

15 -4,60 4,60 -11,00 -0,25 

16 14,60 -14,60 -5,00 -1,15 

17 5,00 -5,00 -7,40 2,45 

18 19,40 -19,40 3,40 6,05 

19 3,80 -3,80 -6,20 11,45 

20 -5,80 5,80 -12,20 16,85 

21 -3,40 3,40 7,00 4,25 

22 -7,00 7,00 -14,60 8,75 

23 15,80 -15,80 -2,60 15,05 

24 -8,20 8,20 -3,80 5,15 

25 -9,40 9,40 -0,20 12,35 

Table 6.4: DOE for the parametric analysis on the ASMO car body shape. 
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Figure 6.14: parallel chart for the three parameters. 

 

 

 

 

 

6.1.3. RESULTS 

 

Prepared the design exploration table and exported the morphing files for each combination 

of the shape parameters from RBF Morph, the parametric analysis was started by launching the 

batch file that contains the instructions in the form of command-lines for the operating system 

of the computer. The script, looping on every shape variant, runs and stores the results of all 

the 25 simulations. All simulations are computed on an 8 GB RAM HP machine, with an Intel® 

CoreTM i7-8550U processor, composed by 4 independent central processing units operating at 

a base frequency of 1.80 GHz. The numerical results of greatest interest, such as the 

aerodynamic forces acting on the vehicle (downforce, drag force) and the respective 

coefficients (CL, CD) are presented in table 6.5. 
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Design 

Number 
Downforce [N] Drag [N] CL [-] CD [-] 

0 3,27975 13,47044 0,03477 0,14280 

1 -0,31402 13,05597 -0,00332 0,13819 

2 -1,42447 13,17700 -0,01507 0,13940 

3 5,08376 13,45192 0,05370 0,14210 

4 1,85017 13,37583 0,01960 0,14173 

5 4,74168 13,71682 0,05008 0,14487 

6 2,93289 13,64141 0,03108 0,14455 

7 -1,65695 13,66147 -0,01755 0,14471 

8 6,72995 13,89578 0,07117 0,14694 

9 1,18513 13,18660 0,01251 0,13922 

10 -0,48814 13,53902 -0,00516 0,14310 

11 4,11472 13,52637 0,04362 0,14338 

12 -0,78821 13,06499 -0,00833 0,13803 

13 3,85430 13,35891 0,04080 0,14140 

14 -2,20308 13,14323 -0,02334 0,13926 

15 0,40245 14,01567 0,00427 0,14856 

16 0,20156 13,12589 0,00214 0,13912 

17 0,80800 13,28668 0,00856 0,14078 

18 3,07086 13,54295 0,03251 0,14339 

19 2,24509 13,32411 0,02374 0,14092 

20 1,82183 14,14167 0,01924 0,14938 

21 5,78925 14,01153 0,06133 0,14843 

22 0,74567 14,31430 0,00789 0,15146 

23 2,10025 13,17041 0,02220 0,13919 

24 3,36276 14,35760 0,03561 0,15204 

25 5,12882 14,52660 0,05423 0,15361 

Table 6.5: numerical results at the end of the parametric analysis. 
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Figure 6.15: downforce of each design point. 

 

 

Figure 6.16: drag force of each design point. 
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Figure 6.17: lift (downforce) coefficient of each design point. 

 

 

Figure 6.18: drag coefficient of each design point. 
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Although the total number of geometries studied in the parametric analysis of the vehicle is 

low, in a comparison between the values of lift coefficient and drag coefficient obtained for 

each shape variant is already possible to glimpse a hint of a Pareto front, which emerges due to 

the conflicting nature of the two objectives with respect to the selected design variables. 

Evidently, it can be observed that the CL is maximized whilst the CD is minimized and vice 

versa. Fig. 6.19 shows the Pareto front that joins the non-dominated points of the design space. 

It is clear from this figure that choosing appropriate value for the parameters of the car shape 

for obtaining a better value of one objective would cause a worse value of another objective. 

However,  if  the  set  of  decision  variables  is selected based on each of the Pareto sets, it will 

lead to the best possible combination of those two objectives. In other words, if any other pair 

of decision variables is chosen, the corresponding values of the pair of objectives, i.e. CL and 

CD, will locate a point inferior to the corresponding Pareto front. Such inferior area in the space 

of the two objectives is in fact top/right side of fig. 6.19. Clearly, there are some significant 

optimal design facts between the two objective functions which have been discovered by the 

design exploration. Such design facts would be decisive to the designer to switch from one 

optimal solution to another for achieving different trade-off requirements of the objectives. 

 

 

Figure 6.19: comparison of the two objectives (lift and drag). 
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Figure 6.20: lowest drag configuration (design number 12). 

 

 

Figure 6.21: highest downforce configuration (design number 8). 

 

 

 

6.2. VOLVO CAR SIDE-VIEW MIRROR 
 

 

As a next-generation transportation system, automated driving technology is being 

investigated and developed for goals such as lowering traffic accidents and driving loads. Public 

road demonstration tests are currently being carried out mostly in Europe, the United States, 

and Asia. In the commercial launch of automated driving technology, solving technical 

challenges in diverse situations is a critical issue. A self-driving vehicle recognizes objects in 

its environment, makes judgments, and manages its steering and acceleration autonomously 

[37]. Autonomous vehicles (AVs) rely on a variety of sensor technologies to evaluate their 
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surroundings and make logical decisions based on the data gathered, just like humans do. 

Perception systems (sensors onboard AVs) provide enough information to enable autonomous 

transportation and mobility under optimal operating conditions. In actuality, there are still a 

number of issues that might obstruct the operation of AVs sensors and, as a result, reduce their 

effectiveness under more realistic situations that occur in the real world. Because the road 

infrastructure is constructed for human visual sensors, cameras will continue to be one of the 

most important sensors. In the first generation of systems, a single camera was utilized, but 

more recently, multiple cameras have been used to deliver full coverage around the car to handle 

more complex driving conditions. In adverse environmental conditions such as rain, fog, snow, 

and other forms of severe weather, the quality of computer vision algorithms degrades 

dramatically. This is aggravated when the camera lens is exposed to rain or to freezing 

conditions in the winter. Furthermore, external cameras are exposed to mud and dust. As a 

result, it's critical to detect when the camera lens is soiled so that the system is aware that the 

vision algorithms will suffer serious degradation. In this chapter, the developed workflow is 

tested for the design exploration of an industrial case study in collaboration with Volvo Cars 

and RBF Morph. The study carried out is aimed at appropriately modifying the shape of a 

geometric detail located around a camera mounted on the underside of a side-view mirror in 

order to minimize the thickness of fluid film that is deposited on the lens of the camera. 

 

 

6.2.1. BASELINE MODEL 

 

The geometry of the Volvo side-view mirror, with the camera mounted beneath, is attached 

to the generic DrivAer car model, a generic car model developed at the Institute of 

Aerodynamics and Fluid Mechanics at the Technische Universität München to facilitate 

aerodynamic investigations of passenger vehicles. The complete simulation on Volvo geometry 

can be divided into two parts: a first part in which the flow field around the car is solved in 

stationary conditions and air as the only fluid, and a second part in which, on the basis of the 

stationary results obtained in the first, a multiphase transient simulation (air / fluid film) is 

carried out. Since the model is very complex, the simulations to be performed have a moderately 

high computational cost and considering that the computing power available for this work is 

rather modest, the results reported in this paragraph are presented more for demonstration 

purposes of the feasibility of the workflow than for their practical value. 
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Figure 6.22: Volvo side mirror attached to the DrivAer car model. 

 

 

Figure 6.23: Volvo side-view mirror (top) and detail of the camera lens (bottom). 

 

For this model of simulation, since we are not interested in most of the fluid dynamic effects 

that occur near the surface of the DrivAer vehicle, except for the region of space that 

circumscribes the side mirror, the dimensions of the wind tunnel have been chosen with greater 

flexibility: the wind tunnel (fig. 6.24) has a width of 6.5 m, a length of 27.5 m and a height of 

5.2 m. 
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Figure 6.24: wind tunnel geometry 

 

The creation of the calculation grid on the model is one of the most delicate phases of the 

simulation set-up, as it is necessary to concentrate a huge number of cells in the direct vicinity 

of the mirror to better grasp the physical phenomena that is important to evaluate. For this 

reason, around the side mirror, a region of overset mesh was placed. On the contrary, since as 

previously said there is no interest in the wake effects of the vehicle (and to reduce the 

computational complexity of the calculation), the mesh has not been refined behind the DrivAer 

model, saving a significant number of elements. The resulting mesh consists of only 906,734 

trimmed and polyhedral cells, with prismatic cell layers next to the boundary surface to help 

capturing the viscous boundary layer accurately. 

 

 

Figure 6.25: meshing of the underside of the side-view mirror. 

 

The boundary conditions for this simulation are a 40 mph inflow velocity at the entrance of the 

wind tunnel, a 0 Pa outlet pressure at the exit, and a no-slip condition on the ground surface 
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and the vehicle surface. Both the steady and the unsteady solutions were calculated employing 

a realizable k-ε turbulence model with a two-layer all-y+ wall treatment. The second part of the 

simulation, which solves the multiphase non-stationary case, involves establishing additional 

boundary conditions. These include the definition of a shell region (region of space affected by 

the multiphase air/fluid film solution model), and the definition of a fluid film inlet/outlet 

system through the shell region. Initial fluid film thickness on the shell region is set to 0.1 mm. 

Water flows out of the inlet boundary with a 0.5 mm thickness and a velocity of 4.36 mm/s. As 

it flows down the shell region, the water is affected by both air flow around the vehicle and 

gravity, forming a liquid film in the process. In some cases the film thickness can become very 

large. This behavior is typically physical (for example, the liquid film is pushed into a corner 

and it cannot escape). A very large film thickness (much larger than the thickness of the 

neighbor volume cell) can cause numerical instabilities in the simulation. Setting a maximum 

film thickness property ensures that the film thickness does not exceed an appropriate maximum 

value at any location. When the specified thickness of 1 mm is reached, any extra fluid is 

removed from the film and is lost from the simulation. In this scenario, mass conservation is 

not explicitly satisfied in the simulation. 

 

 

Figure 6.26: visualization of the minimum, maximum and average film thickness during the transient 

simulation. 

 

The simulation is run using the implicit unsteady solver for a simulated time of 1 second with 

a time step size set to 1 ms. Fig. 6.27 and fig. 6.278display the inlet and outlet boundaries 

selected for the side-view mirror. At the end of the unsteady simulation, mean fluid film 

thickness is evaluated in the camera lens (fig. 6.29).  



111 
 

 

Figure 6.27: fluid film inlet boundaries. 

 

 

Figure 6.28: fluid film outlet boundaries. 

 

 

Figure 6.29: average fluid film thickness deposition on the camera lens. 
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6.2.2. SHAPE PARAMETRIZATION 

 

As in the previous case, the parameterization of the Volvo geometry was performed using 

the graphical interface of ANSYS Mechanical, taking advantage of the functionality of RBF 

Morph ACT Extension. The shape was modified introducing 6 shape parameters, each one 

controlling a specific detail of the geometry. To allow a better agreement between the parts that 

are morphed and those that are kept fixed, a buffer region has generally been interposed. The 

critical aspect to be considered in the parameterization and modification of the geometry is that 

the region of the surface occupied by the camera must remain fixed in space, therefore careful 

attention was paid to making sure that the variations in shape obtained with the parameters 

introduced did not involve movements of the camera. 

 

P1, P2 and P3 parameters 

These parameters act on the positions of the outer edges of the target geometry. RBF centers 

were rigidly translated to achieve the shape variation obtained with amplifications and 

decreases of the parameters. Fig. 6.30 shows a preview of a possible combination for all three 

parameters (original source points are colored in red and morphed points are represented in 

blue), whilst table 6.6 summarizes the selected variation ranges for each of them. 

 

 

Figure 6.30: shape parametrization (P1, P2 and P3) of the geometry. 
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 Lower limit [m] Upper limit [m] 

P1 -0.005 +0.010 

P2 0.000 +0.015 

P3 0.000 +0.015 

Table 6.6: lower and upper limits of P1, P2 and P3. 

 

E1, E2 parameters 

These parameters were introduced to control the position of the rounded edges located on 

the left and on the right of the camera. A comparison between original shape (red points) and a 

generic morphed shape (blue points) is presented in fig. 6.31.  

 

 

Figure 6.31: shape parametrization (E1 and E2) of the geometry. 

 

 Lower limit [m] Upper limit [m] 

E1 -0.002 +0.000 

E2 -0.002 +0.004 

Table 6.7: lower and upper limits of E1 and E2. 
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Offset parameter 

This parameter controls the depth of the surface surrounding the camera. In order to avoid 

geometric distortions due to too aggressive morphing, for this parameter it was decided to limit 

the range of variation to fractions of a millimeter (table 6.8). 

 

 

Figure 6.32: Offset of the surface around the camera. 

 

 Lower limit [m] Upper limit [m] 

Offset 0.0000 +0.0005 

Table 6.8: lower and upper limits of the Offset parameter. 

 

In this case the design space was explored by generating a DOE table through the Optimal-

Space-Filling algorithm of ANSYS Workbench, choosing again to evaluate 25 different 

combinations of design parameters, but with the difference that now the number of parameters 

in 6, compared to the 3 of the previous application. It is worth noting that with such a number 

of shape parameters to be studied, a number of 25 combinations does not allow, generally, a 

good evaluation of the design space. As mentioned above, the parametric analysis conducted 

has more the purpose of demonstrating the feasibility of the proposed workflow than of 
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indicating a solution to the optimization problem. A comparison between the baseline geometry 

and a generic morphed geometry after the parametrization procedure is displayed in fig. 6.33. 

 

 

Figure 6.33: comparison between baseline geometry (top) and generic modified shape (bottom). 

 

Design 

Number 

P1 

[mm] 

P2 

[mm] 

P3 

[mm] 

E1 

[mm] 

E2 

[mm] 

Offset 

[mm] 

1 0,70 14,70 3,90 -0,36 1,72 0,37 

2 -4,10 2,10 6,90 -0,44 0,52 0,41 

3 6,10 5,70 5,70 -0,04 2,92 0,39 

4 1,30 8,70 14,70 -0,68 2,68 0,45 

5 -1,70 1,50 2,10 -1,64 -0,20 0,19 
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6 9,70 12,90 9,30 -0,60 0,28 0,13 

7 -1,10 7,50 2,70 -0,28 0,76 0,03 

8 -0,50 14,10 10,50 -0,92 3,16 0,09 

9 8,50 10,50 9,90 -1,48 3,64 0,31 

10 7,30 12,30 0,30 -1,56 1,00 0,25 

11 5,50 3,90 7,50 -1,08 -1,88 0,05 

12 4,90 2,70 4,50 -1,72 1,24 0,47 

13 -2,90 13,50 5,10 -1,32 -1,16 0,17 

14 3,10 5,10 12,90 -0,12 1,96 0,07 

15 -4,70 4,50 13,50 -1,16 0,04 0,15 

16 7,90 0,90 11,70 -0,76 -0,44 0,33 

17 -3,50 9,90 8,10 -1,80 1,48 0,43 

18 4,30 9,30 14,10 -1,88 -0,68 0,21 

19 2,50 8,10 6,30 -1,96 2,20 0,01 

20 -2,30 6,90 1,50 -1,00 3,88 0,27 

21 0,10 11,10 12,30 -0,20 -1,40 0,29 

22 3,70 6,30 0,90 -0,52 -1,64 0,35 

23 6,70 11,70 8,70 -1,24 -0,92 0,49 

24 9,10 3,30 3,30 -0,84 2,44 0,11 

25 1,90 0,30 11,10 -1,40 3,40 0,23 

Table 6.9: DOE for the parametric analysis on the Volvo side-view mirror geometry. 

 

 

Figure 6.34: parallel chart for the 6 shape parameters. 
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6.2.3. RESULTS 

 

The parametric analysis is performed following the same methodology as the previous one, 

with the difference that for these simulations CFD analysis the computational expense is much 

higher. All simulations are computed on a 128 GB RAM workstation, with two Intel® Xeon® 

E5-2680 v2 processors, composed by 20 independent central processing units operating at a 

base frequency of 2.80 GHz. The most relevant performance indicator, the mean fluid film 

thickness deposited on the camera lens, is shown for each simulation in fig. 6.35. It can be 

observed that 2 of the 25 simulations performed (number 10 and number 19), at the end of the 

parametric analysis, failed to execute. An inspection of the log file reveals that those two 

geometries, following the morphing action based on the shape parameter values decided during 

the creation of the DOE, returned a volume mesh within STAR-CCM+ with one or more 

negative volume cells, and therefore the simulation did not start.  

 

 

Figure 6.35: Mean of fluid film thickness for each design point. 
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7. CONCLUSIONS 
 

 

 

The aerodynamic of road vehicles can be explored and improved by using computational 

fluid dynamic (CFD) tools. These tools provide quite accurate results within reasonable time 

scales. Results of simulations are generally not grid independent and not model independent, 

however, once these limitations are properly understood, these tools may be used for the design 

exploration and optimization of many industrial applications. Computationally based designed 

experiments and optimization studies have historically been limited by the cost and time 

associated with configuration changes and simulation times. The majority of computational 

studies in the traditional processes have also tended to be sequential in nature. The innovative 

and now consolidated parameterization and mesh-morphing techniques based on state-of-the-

art fast Radial Basis Functions (RBF) obviate the need for the more time-consuming and often 

troublesome traditional CAD-based parameterization approaches. 

The work carried out and presented in this thesis was done in a context of numerical 

aerodynamic calculation based on existing tools and software, in collaboration with Volvo and 

RBF Morph. An advanced technological prototype of an orchestrator, based on an automatic 

workflow combining disjointed software and CAE tools, was developed and put to test with 

two practical industrial applications. In the first one, the aerodynamics of the ASMO idealized 

car body shape was studied, then the geometry shape was parametrized and optimized. The 

shape parameters introduced (Boat Tail, Roof Drop and Front Spoiler) made it possible to 

evaluate the performance of the vehicle corresponding to various possible designs. It emerged 

from the parametric analysis conducted on the vehicle that the initial baseline solution can be 

improved and optimized according to two objectives: aerodynamic resistance (through a 

minimization of drag force) and stability / grip on the road (through a maximization of 

downforce. The results of the CFD analysis performed on the baseline model, even with a 

coarse grid, are in accordance with the values obtained by other numerical evaluations in the 

literature (Aljure et al. (2014) [33]) and with the experimental results obtained by experimental 

tests in Volvo wind tunnels (Tsubokura et al. (2009) [32]). The CFD analysis returned optimal 

combinations of the shape parameters to generate a vehicle geometry that presents a reduction 

in the drag coefficient compared to the initial geometry by about 3.34%, going from 0.143 to 

0.138. Considering that the initial geometry of ASMO already has a remarkably streamlined 

shape, such a reduction in the drag coefficient is still a significant result. The lift coefficient has 
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been improved from a value of -0.035 in the baseline geometry to a value of -0.071 in the 

corresponding optimized geometry. Even with a relatively small set of shape variants studied it 

was possible to obtain a rudimentary Pareto front, pointing to a set of trade-off solutions to the 

problem of vehicle shape optimization. In the second application of the workflow a multiphase 

CFD simulation was carried out on a side-view mirror of a Volvo car. The study was performed 

with the objective of finding a solution to a shape optimization problem involving the 

minimization of the fluid film thickness deposited on the lens of a camera. Again, the workflow 

proved to be effective in the implementation of a fast and reliable prototype of orchestrator, 

automating the exploration of many different design configurations and thus achieving the 

objective of supporting the designer in the process of shape optimization and gaining of a much 

deeper understanding of the design space around a given exterior theme.  

The workflow presented also embodies a sophisticated and automatic calculation methodology 

with enormous applicability potential and was developed as a support demonstrator for the RBF 

Morph technology, acting as a pilot for the new Stand-Alone version of the commercial 

morpher, currently under development and which will soon be released on the market. 
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8. APPENDIX 
 

 

 

This appendix contains the user codes that are part of the orchestrator prototype. The codes 

were written to facilitate the management of complex tasks and automate the workflow.  

 

 

8.1. CALLING RBF LIBRARIES AND 

EXECUTING MESH MORPHING 
 

 

The following C++ code performs the task of: reading morphing data from files generated 

in RBF Morph ACT, calling functions in the RBF Morph libraries to solve the RBF problem, 

morphing the baseline mesh, and saving the coordinates of the new grid to a new file. 

 

 

#define _CRT_SECURE_NO_DEPRECATE 
#include "RBF_FGP.h" 
#include <string> 
#include <stdio.h> 
#include <stdlib.h> 
#include <stdbool.h> 
#include <iostream> 
#include <fstream> 
#include <vector> 
#include <cmath> 
using namespace std; 
 

vector<vector<double>> encap(double x0, double y0, double z0, double Lx, 
double Ly, double Lz, int Nx, int Ny, int Nz) 
{ 
    double delta_x = Lx / (Nx-1); 
    double delta_y = Ly / (Ny-1); 
    double delta_z = Lz / (Nz-1); 
 
    vector<vector<double>> r; 
    vector<double> xyz; 
    int i, j, k; 
 
    k = 0; 
    for (int i = 0; i < Nx; i++) 
    { 
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        for (int j = 0; j < Ny; j++) 
        { 
            xyz.push_back(x0 + i*delta_x); 
            xyz.push_back(y0 + j*delta_y); 
            xyz.push_back(z0 + k*delta_z); 
            r.push_back(xyz); 
            xyz.clear(); 
        } 
    } 
 
    k = Nz-1; 
    for (int i = 0; i < Nx; i++) 
    { 
        for (int j = 0; j < Ny; j++) 
        { 
            xyz.push_back(x0 + i*delta_x); 
            xyz.push_back(y0 + j*delta_y); 
            xyz.push_back(z0 + k*delta_z); 
            r.push_back(xyz); 
            xyz.clear(); 
        } 
    } 
 
    j = 0; 
    for (int i = 0; i < Nx; i++) 
    { 
        for (int k = 0; k < Nz; k++) 
        { 
            xyz.push_back(x0 + i*delta_x); 
            xyz.push_back(y0 + j*delta_y); 
            xyz.push_back(z0 + k*delta_z); 
            r.push_back(xyz); 
            xyz.clear(); 
        } 
    } 
 
    j = Ny-1; 
    for (int i = 0; i < Nx; i++) 
    { 
        for (int k = 0; k < Nz; k++) 
        { 
            xyz.push_back(x0 + i*delta_x); 
            xyz.push_back(y0 + j*delta_y); 
            xyz.push_back(z0 + k*delta_z); 
            r.push_back(xyz); 
            xyz.clear(); 
        } 
    } 
 
    i = 0; 
    for (int j = 0; j < Ny; j++) 
    { 
        for (int k = 0; k < Nz; k++) 
        { 
            xyz.push_back(x0 + i*delta_x); 
            xyz.push_back(y0 + j*delta_y); 
            xyz.push_back(z0 + k*delta_z); 
            r.push_back(xyz); 
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            xyz.clear(); 
        } 
    } 
 
    i = Nx-1; 
    for (int j = 0; j < Ny; j++) 
    { 
        for (int k = 0; k < Nz; k++) 
        { 
            xyz.push_back(x0 + i*delta_x); 
            xyz.push_back(y0 + j*delta_y); 
            xyz.push_back(z0 + k*delta_z); 
            r.push_back(xyz); 
            xyz.clear(); 
        } 
    } 
 
    const char file_name_box[100] = "C:\\ASMO_VOLVO\\C++_box.txt"; 
 
    fstream file; 
    file.open(file_name_box, ios::out | ios::binary); 
    if (!file) 
    { 
        cout << "Error: " << file_name_box << " could not be opened" << endl; 
    } 
    else 
    { 
        for (int i = 0; i < r.size(); i++) 
        { 
            for (int j = 0; j < r[i].size(); j++) 
            { 
                file << r[i][j] << "\t"; 
            } 
            file << 0 << "\t" << 0 << "\t" << 0 << "\t"  << "\n"; 
        } 
        file.close(); 
    } 
 
    cout << "Encapsulation volume created." << endl; 
    return r; 
} 
 

int main(int argc, char *argv[]) 
{ 
    cout << "\n========================\n" << endl; 
    cout << "Solving linear system... " << endl; 
 
    const int file_name_size = 1024; 
    const int max_line = 2048; 
 
 
    string file_name_in = argv[1]; 
    const char file_name_p[file_name_size] = 
"C:\\ASMO_VOLVO\\tmp\\temp_p.txt"; 
 

    int nol = 0; 
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    string line; 
    ifstream file(file_name_in); 
 
    while (getline(file, line)) 
    { 
        nol++; 
    } 
    cout << "Number of source points: " << nol << endl; 
    file.close(); 
 
    ifstream in(file_name_in, ios::in | ios::binary); 
    ofstream out(file_name_p, ios::out | ios::binary); 
 
    for (char c; in.get(c); out.put(c)) 
    { 
        if (c == ',') 
        { 
            c = '.'; 
        } 
    } 
 
    in.close(); out.close(); 
 

    const char file_name[file_name_size] = "C:\\ASMO_VOLVO\\tmp\\temp.txt"; 
    char buffer[max_line]; 
    int delete_line = 1; 
 
    FILE *temp_1, *temp_2; 
    temp_1 = fopen(file_name_p, "r"); 
    temp_2 = fopen(file_name, "w"); 
 
    if (temp_1 == NULL || temp_2 == NULL) 
    { 
        cout << "Error: one or more files could not be opened" << endl; 
        return 1; 
    } 
 
    bool keep_reading = true; 
    int current_line = 1; 
 
    do 
    { 
        fgets(buffer, max_line, temp_1); 
        if (feof(temp_1)) 
        { 
            keep_reading = false; 
        } 
        else if (current_line != delete_line) 
        { 
            fputs(buffer, temp_2); 
        } 
        current_line++; 
    } while (keep_reading); 
 
    fclose(temp_1); fclose(temp_2); 
 
    // VOLVO 
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    double x0 = 2.450; 
    double y0 = -1.100; 
    double z0 = 1.050; 
    double Lx = 0.350; 
    double Ly = 0.310; 
    double Lz = 0.270; 
    int Nx = 20; 
    int Ny = 20; 
    int Nz = 20; 
/* 
    // ASMO (BOAT TAIL) 
    double x0 = 0.60; 
    double y0 = -0.15; 
    double z0 = 0.00; 
    double Lx = 0.25; 
    double Ly = 0.30; 
    double Lz = 0.25; 
    int Nx = 20; 
    int Ny = 20; 
    int Nz = 20; 
 
    // ASMO (BOAT TAIL + LONG ROOF DROP) 
    double x0 = 0.40; 
    double y0 = -0.15; 
    double z0 = 0.00; 
    double Lx = 0.45; 
    double Ly = 0.30; 
    double Lz = 0.28; 
    int Nx = 20; 
    int Ny = 20; 
    int Nz = 20; 
 
    // ASMO (BOAT TAIL + LONG ROOF DROP + FRONT SPOILER) 
    double x0 = -0.10; 
    double y0 = -0.20; 
    double z0 = 0.00; 
    double Lx = 1.00; 
    double Ly = 0.40; 
    double Lz = 0.30; 
    int Nx = 20; 
    int Ny = 20; 
    int Nz = 20; 
*/ 
 
    encap(x0, y0, z0, Lx, Ly, Lz, Nx, Ny, Nz); 
 

    const char file_name_box[100] = "C:\\ASMO_VOLVO\\C++_box.txt"; 
 
    int nol_box = 0; 
    string line_box; 
    ifstream file_box(file_name_box); 
 
    while (getline(file_box, line_box)) 
    { 
        nol_box++; 
    } 
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    cout << "Number of source points on the encapsulation volume: " << nol_box 
<< endl; 
    file_box.close(); 
 
    int sp_n = nol + nol_box; 
    cout << "Total number of source points: " << sp_n << endl; 
 
    double* x = new double[sp_n]; 
    double* y = new double[sp_n]; 
    double* z = new double[sp_n]; 
    double* dx = new double[sp_n]; 
    double* dy = new double[sp_n]; 
    double* dz = new double[sp_n]; 
    double* gx = new double[sp_n]; 
    double* gy = new double[sp_n]; 
    double* gz = new double[sp_n]; 
    double* lx = new double[sp_n]; 
    double* ly = new double[sp_n]; 
    double* lz = new double[sp_n]; 
 
    int counter = 1; 
    float x_i, y_i, z_i, dx_i, dy_i, dz_i; 
     
 
    FILE* f = fopen(file_name, "r"); 
    FILE* f_box = fopen(file_name_box, "r"); 
    if (f == NULL || f_box == NULL) 
    { 
        cout << "Error: one or more files could not be opened" << endl; 
        exit(1); 
    } 
 
    for (int i = 0; i < nol; i++) 
    { 
        fscanf_s(f, "%f %f %f %f %f %f %*i %*i %*c %*c", &x_i, &y_i, &z_i, 
&dx_i, &dy_i, &dz_i); 
        x[i] = x_i; y[i] = y_i; z[i] = z_i; 
        gx[i] = x_i; gy[i] = y_i; gz[i] = z_i; 
        dx[i] = dx_i; dy[i] = dy_i; dz[i] = dz_i; 
        counter++; 
    } 
 
    fclose(f); 
 
    for (int i = nol; i < (nol + nol_box); i++) 
    { 
        fscanf_s(f_box, "%f %f %f %f %f %f", &x_i, &y_i, &z_i, &dx_i, &dy_i, 
&dz_i); 
        x[i] = x_i; y[i] = y_i; z[i] = z_i; 
        gx[i] = x_i; gy[i] = y_i; gz[i] = z_i; 
        dx[i] = dx_i; dy[i] = dy_i; dz[i] = dz_i; 
        counter++; 
    } 
 
    fclose(f_box); 
 
    if (sp_n != (counter-1)) 
    { 
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        cout << "Error: incorrect data reading" << endl; 
        exit(1); 
    } 
     
     
    int omp_cores = 0; 
    bool use_gpu = false; 
    bool precompute = false; 
    bool single_prec = true; 
    int rbf_exp = 1; 
    int q = 25; 
    double tolerance = 1e-5; 
    int max_iter = 100; 
    double dist_dupl = 1e-8; 
    double Cpar = 0; 
 
    double a[3]; 
    double max_err; 
    int iter; 
 

    clock_t t; 
    t = clock(); 
    int temp = sp_n; 
    sp_n = Purge(sp_n, x, y, z, dx, dy, dz, dist_dupl); 
    t = clock() - t; 
    printf("Purging (%g distance, in %.3f seconds):\n  Number of source points 
excluded: %d\n  New number of source points: %d\n", dist_dupl, ((float)t) / 
CLOCKS_PER_SEC, temp - sp_n, sp_n); 
 

    t = clock(); 
    int rc = Solve(sp_n, q, tolerance, max_iter, precompute, omp_cores, 
use_gpu, single_prec, rbf_exp, Cpar, x, y, z, dx, dy, dz, lx, ly, lz, a, 
&max_err, &iter, NULL); 
    if (rc != 0) 
    { 
        cout << "Error: Solve function" << endl; 
        getchar(); 
        exit(1); 
    } 
    t = clock() - t; 
    printf("Solving (%.3f seconds)\n", ((float)t) / CLOCKS_PER_SEC); 
    // PrintOutput(sp_n); 
    printf("ALPHA:    %g    %g    %g\n", a[0], a[1], a[2]); 
 
    cout << "Solving linear system: done." << endl; 
    cout << "\n========================\n" << endl; 
    cout << "Morphing process started... " << endl; 
 
    const char file_name_star[file_name_size] = 
"C:\\ASMO_VOLVO\\STAR_vertex_coord.txt"; 
 
    int size = 0; 
    string line_star; 
    ifstream file_star(file_name_star); 
 
    while (getline(file_star, line_star)) 
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    { 
        size++; 
    } 
    cout << "Number of vertices to be moved: " << size << endl; 
    file_star.close(); 
 
    int mp_n = size; 
 
    double *x_m = new double[mp_n]; 
    double *y_m = new double[mp_n]; 
    double *z_m = new double[mp_n]; 
    double *dx_m = new double[mp_n];  
    double *dy_m = new double[mp_n]; 
    double *dz_m = new double[mp_n]; 
 
    int counter_star = 0; 
 
    FILE *f_star = fopen(file_name_star, "r"); 
    if (f_star == NULL) 
    { 
        cout << "Error: " << file_name_star << " could not be opened" << endl; 
        exit(1); 
    } 
    else 
    { 
        for (int i = 0; i < size; i++) 
        { 
            fscanf_s(f_star, "%f %f %f", &x_i, &y_i, &z_i); 
            x_m[i] = x_i; y_m[i] = y_i; z_m[i] = z_i; 
            dx_m[i] = 0.0; dy_m[i] = 0.0; dz_m[i] = 0.0; 
            counter_star++; 
        } 
    } 
 
    fclose(f_star); 
 

    t = clock(); 
    int rc_m = Morph(mp_n, x_m, y_m, z_m, dx_m, dy_m, dz_m); 
    if(rc_m!=0) {printf("ERRORE Morph  %d   \n", rc_m); getchar(); exit(1);} 
    t = clock() - t; 
    printf("Morphing (%.3f seconds)\n", ((float)t) / CLOCKS_PER_SEC); 
    cout << "Morphing process: done.\n" << endl; 
 

    double *result_x = new double[mp_n]; 
    double *result_y = new double[mp_n]; 
    double *result_z = new double[mp_n]; 
 
    for (int i = 0; i < size; i++) 
    { 
        result_x[i] = (x_m[i] + dx_m[i]); 
        result_y[i] = (y_m[i] + dy_m[i]); 
        result_z[i] = (z_m[i] + dz_m[i]); 
    } 
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    const char file_name_result[file_name_size] = 
"C:\\ASMO_VOLVO\\C++_vertex_coord.txt"; 
 
    t = clock(); 
    fstream file_result; 
    file_result.open(file_name_result, ios::out | ios::binary); 
    if (!file_result) 
    { 
        cout << "Error: " << file_name_result << " could not be opened" << 
endl; 
    } 
    else 
    { 
        for (int i = 0; i < size; i++) 
        { 
            file_result << result_x[i] << " " << result_y[i] << " " << 
result_z[i] << "\n"; 
        } 
        file_result.close(); 
    } 
 
    cout << "New file created: " << file_name_result << endl; 
    t = clock() - t; 
    printf("Writing to file (%.3f seconds)\n", ((float)t) / CLOCKS_PER_SEC); 
 

    delete[] x; 
    delete[] y; 
    delete[] z; 
    delete[] dx; 
    delete[] dy; 
    delete[] dz; 
    delete[] gx; 
    delete[] gy; 
    delete[] gz; 
    delete[] lx; 
    delete[] ly; 
    delete[] lz; 
 
    delete[] x_m; 
    delete[] y_m; 
    delete[] z_m; 
    delete[] dx_m; 
    delete[] dy_m; 
    delete[] dz_m; 
 
} 
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8.2. REGISTERING A USER LIBRARY ON 

STAR-CCM+ 
 

The following summarizes the procedure from writing user-defined functions (UDFs) to 

creating and registering a library populated by these functions on the STAR-CCM+ software. 

The instructions in this document are valid for users of Windows operating system but are also 

easily extended to Linux users; moreover, reference is made to a user code written in C/C++, 

but the same functionality can be obtained by programming in the Fortran language. 

 

1. Interface between STAR-CCM+ and user code 

In the working directory, create the file "uclib.h" defined as follows. This header file acts as an 

interface between the STAR-CCM+ software and user-defined functions. 

----------------------------------------------------------------------------------------------------------------- 

 

#ifndef UCLIB_H 
#define UCLIB_H 
#ifdef DOUBLE_PRECISION 
typedef double Real; 
#else 
typedef float Real; 
#endif 
typedef double CoordReal; 
 
#ifdef __cplusplus 
extern "C" { 
#endif 
#if defined(WIN32) || defined(_WINDOWS) || defined(_WINNT) 
# define USERFUNCTION_EXPORT __declspec(dllexport) 
# define USERFUNCTION_IMPORT __declspec(dllimport) 
#else 
# define USERFUNCTION_EXPORT 
# define USERFUNCTION_IMPORT 
#endif 
  
 extern void USERFUNCTION_IMPORT ucarg(void*, char*,const char*, int); 
 extern void USERFUNCTION_IMPORT ucfunc(void*, char*,const char*); 
 extern void USERFUNCTION_IMPORT ucfunction(void*, char*, char*, int, 
...); 
 
 void USERFUNCTION_EXPORT uclib(); 
 
#ifdef __cplusplus 
} 
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#endif 
#endif 

 

----------------------------------------------------------------------------------------------------------------- 

 

2. User-defined function 

In the same working directory, add the code containing land user function that acts on the 

coordinates of the mesh vertices. The file "vertex_exporting.cpp" exports the coordinates of the 

vertices of the mesh built inside the numerical solver; "vertex_motion.cpp" updates the mesh 

by reading the new coordinates from files following the morph operation. 

----------------------------------------------------------------------------------------------------------------- 

#include "uclib.h" 
#include "RBF_FGP.h" 
#include <math.h> 
#include <iostream> 
#include <string> 
#include <fstream> 
#include <vector> 
#include <cstdlib> 
using namespace std; 
 
 
void USERFUNCTION_EXPORT 
vertex_exporting(CoordReal(*result)[3], int size, CoordReal(*vpos)[3]) 
{ 
    cout << "Exporting vertex coordinates... "; 
    const char file_name_out[100] = "C:\\ASMO_VOLVO\\STAR_vertex_coord.txt"; 
    fstream file; 
    file.open(file_name_out, ios::out | ios::binary); 
    if (!file) 
    { 
        cout << "Error: " << file_name_out << " could not be opened." << endl; 
    } 
    else 
    { 
        for (int i = 0; i < size; i++) 
        {    
            file << vpos[i][0] << " " << vpos[i][1] << " " << vpos[i][2] << 
"\n"; 
        } 
        file.close(); 
    } 
    cout << "Done." << endl; 
    cout << "New file created: " << file_name_out << endl; 
 
    for (int i = 0; i < size; i++) 
    { 
        result[i][0] = (vpos[i][0]); 
        result[i][1] = (vpos[i][1]); 
        result[i][2] = (vpos[i][2]); 



131 
 

    } 
} 
 
 
void USERFUNCTION_EXPORT 
vertex_motion(CoordReal(*result)[3], int size, CoordReal(*vpos)[3]) 
{ 
    cout << "Updating vertex coordinates... "; 
    const char file_name[100] = "C:\\ASMO_VOLVO\\C++_vertex_coord.txt"; 
    FILE *f = fopen(file_name, "r"); 
    if (f == NULL) 
    { 
        cout << "Error: " << file_name << " could not be opened." << endl; 
        exit(1); 
    } 
    else 
    { 
        float x_i, y_i, z_i; 
        for (int i = 0; i < size; i++) 
        { 
            fscanf_s(f, "%f %f %f", &x_i, &y_i, &z_i); 
            result[i][0] = x_i; 
            result[i][1] = y_i; 
            result[i][2] = z_i; 
        } 
    } 
    fclose(f); 
    cout << "Done." << endl; 
} 

 

----------------------------------------------------------------------------------------------------------------- 

 

3. User-functions (UDFs) and library (DLL) registration 

With the following function (uclib.cpp), the user-defined function (UDF) is registered in the 

dynamic link library (DLL). The file indicates the input and output parameters of the function 

and the type of output returned by it. 

 

----------------------------------------------------------------------------------------------------------------- 

 

#include "uclib.h" 
 
void zeroGradT(Real*, int, int(*)[2], Real*); 
void initVelocity(Real(*)[3], int, CoordReal(*)[3]); 
void sutherlandViscosity(Real*, int, Real*); 
void vertex_exporting(CoordReal(*)[3], int, CoordReal(*)[3]); 
void vertex_motion(CoordReal(*)[3], int, CoordReal(*)[3]); 
 
void USERFUNCTION_EXPORT uclib() 
{ 
    /* Register user functions here */ 
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    ucfunc(zeroGradT, "BoundaryProfile", "Zero Gradient Temperature"); 
    ucarg(zeroGradT, "Face", "FaceCellIndex", sizeof(int[2])); 
    ucarg(zeroGradT, "Cell", "Temperature", sizeof(Real)); 
 
    ucfunc(initVelocity, "RegionProfile", "Initial Velocity"); 
    ucarg(initVelocity, "Cell", "Centroid", sizeof(CoordReal[3])); 
 
    ucfunc(sutherlandViscosity, "ScalarFieldFunction", "Sutherland Viscosity"); 
    ucarg(sutherlandViscosity, "Cell", "Temperature", sizeof(Real)); 
 
    ucfunc(vertex_exporting, "RegionProfile", "Vertex Exporting"); 
    ucarg(vertex_exporting, "Vertex", "Coord", sizeof(CoordReal[3])); 
 
    ucfunc(vertex_motion, "RegionProfile", "Vertex Motion"); 
    ucarg(vertex_motion, "Vertex", "Coord", sizeof(CoordReal[3])); 
     
} 

 

----------------------------------------------------------------------------------------------------------------- 

 

4. Creating the dynamic library 

To create a dynamic linked library on STAR-CCM+, open the x64 Native Tool Command 

Prompt for VS 2022 and enter a series of commands following the instructions below. 

1. Access the working directory: 

> cd [PATH] 

where [PATH] represents the address of the directory. 

2. Compile the source codes by generating the respective object files: 

> cl /MD /D_WINDOWS -c *.cpp 

to enable double-precision include the command /DDOUBLE_PRECISION. 

(i.e.: cl /MD /D_WINDOWS /DDOUBLE_PRECISION -c uclib.cpp 

vertex_exporting.cpp vertex_motion.cpp) 

3. Link the newly created object files  to generate the dynamic library, making use of 

the UserFunctions.lib file located in the STAR-CCM+ software installation 

directory: 

> link -dll /out:libuser.dll *.obj [PATH]\UserFunctions.lib 

(i.e.: link -dll /out:libuser.dll uclib.obj vertex_exporting.obj vertex_motion.obj 

"C:\Program Files\Siemens\16.02.009-R8\STAR-CCM+16.02.009-

R8\star\lib\win64\intel20.1vc14.2-r8\lib\UserFunctions.lib") 

The "libuser.dll" library is now accessible from Tools->UserCode section of 

STAR-CCM+. After changes to the functions contained in the library, repeat the steps 

from step 2. 
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8.3. MS-DOS script 
 

 

In this paragraph the DOS shell script executed by the DOS command interpreter is presented. 

This batch file automates the entire workflow. 

 

@echo off 
 
set LOGFILE=batch_ASMO_log.log 
call :LOG > %LOGFILE% 
exit /B 
 
:LOG 
 
setlocal enableextensions enabledelayedexpansion 
 
del /s /q "C:\ASMO_VOLVO\txt\list_ASMO.txt" 
 
cd C:\ASMO_VOLVO\txt 
for %%i in (C:\ASMO_VOLVO\txt\ASMO\*.*) do echo %%i >> list_ASMO.txt 
echo\ 
echo ========================================================================= 
echo ========================================================================= 
echo\ 
 
cd "C:\ASMO_VOLVO\src" 
cl /MD /D_WINDOWS /DDOUBLE_PRECISION -c uclib.cpp UDF.cpp 
link -dll /out:libuser.dll uclib.obj UDF.obj "C:\Program 
Files\Siemens\16.02.009-R8\STAR-CCM+16.02.009-
R8\star\lib\win64\intel20.1vc14.2-r8\lib\UserFunctions.lib" 
"C:\ASMO_VOLVO\src\RBF_FGP.lib" 
 
echo\ 
echo ========================================================================= 
echo\ 
echo CFD ANALYSIS: ASMO 
echo\ 
 
set /a count = 0 
for %%x in (C:\ASMO_VOLVO\txt\ASMO\*.pts) do set /a count += 1 
 
set /a x = 1 
for /f "tokens=* delims= " %%i in ('type "C:\ASMO_VOLVO\txt\list_ASMO.txt"') do 
( 
 
 echo\ 
 echo =================================================================== 
 echo\ 
 echo Simulation number !x! out of %count% 
 echo Morphing file being evaluated: %%i 
 echo\ 
 echo =================================================================== 
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 cd "C:\ASMO_VOLVO\C++\Morphing_STAR-CCM+\x64\Debug" 
 Morphing_STAR-CCM+.exe %%i 
 
 starccm+ -batch step "C:\ASMO_VOLVO\sim\ASMO\ASMO.sim" 
 
 starccm+ -np 18 -batch "C:\ASMO_VOLVO\sim\ASMO\CFD_set_up_ASMO.java" 
"C:\ASMO_VOLVO\sim\ASMO\ASMO@00501.sim" 
 
 set /a x += 1 
 
) 
echo Batch process completed. 
 
endlocal 
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