

Advanced Methods for Automatic Shape Optimization of Road Vehicles Driven by RBF Mesh Morphing

Master's Degree Thesis in Energy Engineering

University of Rome 'Tor Vergata'

VOLVO

Candidate: Daniele Patrizi

Advisor: Prof. Marco E. Biancolini

Industrial Advisor: Torbjörn Virdung (Volvo Cars)

Co-Advisors: Ubaldo Cella Stefano Porziani

Outline

- Introduction and motivation
- Radial Basis Functions (RBF)
- Materials and methods
- Applications
 - > ASMO
 - Side-view mirror
- Conclusions

$$s(\vec{x}) = \sum_{i=1}^{m} \gamma_i \varphi(\|\vec{x} - \vec{x}_{s_i}\|) + h(\vec{x})$$

2

3

Motivation

- Optimization techniques are gaining a high importance in design and manufacturing of new products
- The aerodynamic department of Volvo needs advanced tools for shape optimization
- Volvo has already used RBF Morph in the past within Ansys Fluent, but now transitioned to STAR-CCM+
- Collaboration between RBF Morph, Tor Vergata and Volvo in the development of a fully automated workflow combining disjointed software and tools

Radial Basis Functions & mesh morphing

Distance from the ith source point

$$\begin{cases} s^{x}(\vec{x}) = \sum_{i=1}^{m} \gamma_{i}^{x} \varphi(\|\vec{x} - \vec{x}_{s_{i}}\|) + \beta_{1}^{x} + \beta_{2}^{x} x + \beta_{3}^{x} y + \beta_{4}^{x} z \\ s^{y}(\vec{x}) = \sum_{i=1}^{m} \gamma_{i}^{y} \varphi(\|\vec{x} - \vec{x}_{s_{i}}\|) + \beta_{1}^{y} + \beta_{2}^{y} x + \beta_{3}^{y} y + \beta_{4}^{y} z \\ s^{z}(\vec{x}) = \sum_{i=1}^{m} \gamma_{i}^{z} \varphi(\|\vec{x} - \vec{x}_{s_{i}}\|) + \beta_{1}^{z} + \beta_{2}^{z} x + \beta_{3}^{z} y + \beta_{4}^{z} z \\ radial basis polynomial \end{cases}$$

- Fast and reliable
- Mesh-less method
- ✓ No re-meshing required
- ✓ Highly parallelizable
- X Computationally expensive for large grids (HPC)
- X The topology cannot be altered
- X Back to CAD procedure required

RBF morphing approach

5

Software & Tools

Mesh morphing

Design exploration

CFD analysis

Coupling & automation

Wind tunnel

Volume meshing

/elocity: Magnitude (m/s)

67

Pressure and velocity fields

 C_L

-0.035

/

/

 C_D

0.143

0.158

0.153

*

Validation

* D. Aljure, O. Lehmkuhl, I. Rodriguez and A. Oliva, "Flow and turbulent structures around simplified car models," Computers & Fluids, vol. 96, 2014.

13

14

Parametrization & mesh morphing

	Lower limit [m]	Upper limit [m]
Boat Tail (left side)	-0.01	+0.02
Boat Tail (right side)	-0.02	+0.01

Parametrization & mesh morphing

	Lower limit [m]	Upper limit [m]
Roof Drop	-0.02	+0.01

Parametric CFD analysis

25 shape variants

Streamlines

Volvo car side-view mirror

- The side-view mirror geometry is attached to the DrivAer model
- Minimization of the mean fluid film thickness on the camera lens

21

Volvo car side-view mirror

l _x [m]	27.5
l _y [m]	6.5
l _z [m]	5.2

- Two parts analysis:
 - Single-phase steady state simulation (air)
 - Multi-phase transient simulation (air / water film)

Multiphase simulation

Fluid film inlet

Fluid film outlet

25

Parametrization & Mesh Morphing

	Lower limit [m]	Upper limit [m]
P ₁	-0.005	+0.010
P ₂	0.000	+0.015
P ₃	0.000	+0.015

Parametrization & Mesh Morphing

	Lower limit [m]	Upper limit [m]
E ₁	-0.002	+0.000
E ₂	-0.002	+0.004

Parametrization & Mesh Morphing

	Lower limit [m]	Upper limit [m]
Offset	0.0000	+0.0005

Parametric CFD analysis

• 25 shape variants

INTRODUCTION	SOFTWARE AND IT TOOLS	WORKFLOW	APPLICATIONS	<u>Conclusions</u>
Conclus	ions			
 Advanced tech 	hnological prototype of ar	n orchestrator		
 Efficient, fully 	y automated design explo	ration workflow		
 Pilot for the new 	ew Stand-Alone version o	f RBF Morph		
 Technological 	innovation for Volvo Cars		20	
			29	

Advanced Methods for Automatic Shape Optimization of Road Vehicles Driven by RBF Mesh Morphing

Master's Degree Thesis in Energy Engineering

University of Rome 'Tor Vergata'

Thank you for your attention

Candidate: Daniele Patrizi

Advisor: Prof. Marco E. Biancolini

Industrial Advisor: Torbjörn Virdung (Volvo Cars)

Co-Advisors: Ubaldo Cella Stefano Porziani

LVO

30