

Faculty of Engineering

Master's degree in Mechanical Engineering

Multiphysics optimization of an exhaust port using mesh morphing

Advisor:

Prof. Marco Evangelos Biancolini

<u>Candidate</u>: Enrico Benso

Co-advisors:

Prof. Lorenzo Bartolucci

Prof. Corrado Groth

A. A. 2022-2023

Table of contents

Objectives:

- 1. Developmention townershoworphingtiphysics simulations
- 2. Automation and optimization workflow
- Integration of mesh morphing shape modifications
- 3. Exhaust case study
- RBF setup Process automation through the use of a Pyhton code Converge simulations setup
 - Results

Starting point:

- 4. Engine head case study
- Exhapper portugind engine head for an internal combestivergeginemulations setup
- Ansys Mechanical simulations setup
 Flowbench simulations with maximum value lift
 Results

Performance parameters

- 5. Conclusions and future developme
- CFD simulations \rightarrow Mass flow rate

• CSM simulations \rightarrow Maximum stress

Ansys

TDI

Mesh morphing

$$s(\mathbf{x}) = \sum_{i=1}^{N} \gamma_i \varphi(\|\mathbf{x} - \mathbf{x}_{si}\|) + h(\mathbf{x})$$

- x = Evaluation point γ_i = Weight of point *i*
- x_s = Source point h(x) = Polynomial term •
- s(x) = Scalar function• φ = Radial function

 $x_{s_{14}}$

Marco Evangelos Biancolini et al. Fast radial basis functions for

engineering applications. Springer, 2017.

*x*_{s3}

0

0.5

0

 x_{s_1}

 x_{s_2}

0.5

TOR VERGATA rbf Mesh morphing strategies CAD based Mesh based • Auxiliary CAD entities Full CAD model ٠ • Sources on virtual geom Sources on the starting model Same mesh of target points ✓ Computational cost ✓ Potentially more precise ⊠ Additional models red ⊠ Complexity

08/05/2024

Multiphysics optimization of an exhaust port using mesh morphing

RBF-viewer

RBF Region (file .dat)

08/05/2024

Multiphysics optimization of an exhaust port using mesh morphing

$$\dot{m_r} = \frac{C_D A_r P_0}{\sqrt{RT_0}} \left(\frac{p_T}{p_0}\right)^{\frac{1}{\gamma}} \left\{\frac{2\gamma}{\gamma - 1} \left[1 - \left(\frac{p_T}{p_0}\right)^{\frac{\gamma - 1}{\gamma}}\right]\right\}^{\frac{1}{2}}$$

•
$$p_0=$$
Cylinder static pressu

- $p_T = \text{Downstream static press}$
- C_D = Discharge coefficient
- $A_r = \text{Reference area}$

John B. Heywood. Internal combustion engine

fundamentals.

Exhaust - Geometry

Valve lift	10 <i>mm</i>
Valve diameter	28 mm
Courtain area	$800 \ mm^2$
Minimum flow area	$484 \ mm^2$
Cylinder bore	80 mm

Virtual geometries

- Duct
- Valve stem
- Valve seat

RBF Source RBF Source ΙD ••• 1.T.X 1.S.Z 1 2.5 1.1 ••• 2 5 1.5 ••• ••• ••• ••• •••

Exhaust - RBF setup

$D \epsilon$	esign of Experiment	
•	Duct (translation)	
•	Valve seat(scaling)	
•	Valve seat (scaling,	traslation foe table
		structure

Exhaust - Converge setup

Flow bench \rightarrow Steady-state flow

CONVERGE CED SOFTWARE

Air (Real gas)
Velocity > 0.3 Ma

Compressible flow

TOR VERGATA

- Turbulence model: RNG k-ε
- Law of the wall \rightarrow y+ \in [30,100] through A

Boundary conditions:

- Inlet total pressure = 111325 Pa $\Delta P \approx 100$
- Outlet static pressure = 191325 Brabar
- Inlet turbulent kinetic energy rate = 0.0
- Inlet turbulent dissipation = 0.008 m

Exhaust - Grid convergence

$$\Delta x_{scale} = \frac{\Delta x_{base}}{2^{scale}}$$

Definition		Scale	Layers
Cylindrical :	1	$\setminus \setminus$	
	Valve seat	4	2
Wall embedding	Duct, valve	3	2
	Cylinder	1	2

Δx _{base} [mm]	Mass flow rate $\left[\frac{Kg}{s}\right]$	Number of cells	Solutio n time [<i>s</i>]	Percentag e differenc e
4	0.14	215000	1726	\ \
2	0.147	738000	11307	5 %
1	0.152	4500000	> 24 h	3.4 %

Best variant

Exhaust - Results

08/05/2024

Multiphysics optimization of an exhaust port using mesh morphing

Engine head - Converge setup

Thermal properties aluminum alloy (Silafont 30)			
Density	$2700 \ \frac{Kg}{m^3}$		
Specific heat	900 $\frac{J}{Kg K}$		
Thermal conductivity	140 $\frac{W}{m K}$		

Flow bench \rightarrow Steady-state flow

CONVERGE

Air (Real gas)
Velocity > 0.3 Ma

Compressible flow

- Turbulence model: RNG k-ε
- Law of the wall \rightarrow y+ \in [30,100] through A

Boundary conditions

- Inlet total pressure = 111325 Pa $\triangle P \approx 100$
- Outlet static pressure = 101325 Par
- Inlet flow temperature = 500 K
- Heat transfer with air through convection

Multiphysics optimization of an exhaust port using mesh morphing

1) - ''Socket'' removal 6.7 % increase of mass flow rate

08/05/2024

Enrico Benso

Engine head - Converge results

Valve seat DOE 2) _

Original geometry $\dot{m}_{originale} = 0.0885 \frac{Kg}{s}$ $C_{\rm D} = 0.421$		Mass flow rate $\left[\frac{Kg}{s}\right]$	Discharg e coeffici ent	Percentag e differenc e	
	1	0.095	0.452	7.34 %	
$\Delta \dot{m} pprox 6.7 \%$	2	0.0965	0.459	9.04 %	
¥	3	0.097	0.461	9.60 %	
fter <i>``socket''</i> removal	4	0.0945	0.449	6.78 %	
$\dot{m}_{no\ socket} = 0.0945 \frac{Kg}{c}$	5	0.096	0.456	8.47 %	
$C_D = 0.449$	6	0.097	0.461	9.61 %	
	F l ow singl	rate refe ter ts both e valve, courtain area	valv e, 4 dfsynarg as reference	e coefficient for	

After

Engine head - Converge results

3) - Duct DOE → No effect on mass flow rate

ТΑ

Engine head - Ansys Mechanical setup

Structure must

Ansys TOR VERGATA

Temperature \rightarrow Mapped on entire domain

Thermal

Multiphysics optimization of an exhaust port using mesh morphing

Engine head - Ansys Mechanical results

7513		XXXXXXX	273XIXGXXXX		4 ,XX		1
		Gri	d converg	ence	-		
	Element size [mm]	Number of nodes	Solutio n time	Maximum stress [MPa]	Perc g diff	enta je Teren ce	
XX	1	2426900	1379	131.12	G	rigin	al
1	0.5	2443400	1444	143.46	9.9	geome 41%	try
Nb	0.25	2504100	1492	148.46	3.3	98	
R	0.1	2971000	1384	148.26	-0.	04 %	
	0.05	4569100	25384	148.28	0.0)1 %	
	ID	Maximum [M	n stress Pa]	Percentag	se le		
公理	0	140	.40	\\			
	1	152	2.49	+8.61 %			
	2	153	8.10	+9.05 %		Bes	st
XX	3	136	5.99	-2.43 %		vari	ant
X	4	139	9.44	-0.01 %			
S	5 132.44 - 5.67 %		5				
X	6	121	.20	-13. 68	010		
	7	125	5.76	-10.43 %			
	8	118	3.11	-15.88 %	5		

/nsys

08/05/2024

Multiphysics optimization of an exhaust port using mesh morphing

Conclusions

- Development of a workflow for optimization through the use of multiphysics analyses
- ✓ Implementation of mesh morphing techniques in CFD and CSM simulations within Designs of Experiment
- ✓ Development of a Python code for the automation of shape variations and simulations execution
- \checkmark Increase in performance in the proposed flow bench cases

✓ Mass flow rate increase of 10%

> ✓ Maximum stress reduction of 15%

- > Integration of optimization software in the workflow
- > Use of the proposed methodology in more realistic cases \rightarrow Combustion, transient analysis
- Application of mesh morphing techniques to the new challenges of hydrogen combustion
- > Expansion to other engineering fields

Faculty of Engineering

Master's degree in Mechanical Engineering

Multiphysics optimization of an exhaust port using mesh morphing

Advisor:

Prof. Marco Evangelos Biancolini

<u>Candidate</u>: Enrico Benso

Co-advisors:

Prof. Lorenzo Bartolucci

Prof. Corrado Groth

A. A. 2022-2023