

Integrated Multi-Physics Optimization of Automotive Road Wheels Using Advanced Mesh Morphing

Marco Evangelos Biancolini – University of Rome "Tor Vergata" Emanuele Di Meo – RBF Morph

Claudio Ponzo, Sarwar Ahmed, Adam Collins, Raff Russo – Nissan Technical Centre Europe

Outline

- An overview about the rbfCAE platform
- Typical usage scenarios and applications
- Study Objective
- Case Study: 18" Wheel
- Integrated Methodology
- Case Setup
- Optimization Results
- Conclusions and Future Work

radial **b**asis **f**unctions morphing of **CAE** models - rbfCAE

- Geometric control by radial basis functions CAE morphing

 Surface shape changes
 Volume mesh adaption
- A new shape of the CAE model ready to run

 for structures in the FEA solver
 for flows in the CFD solver

radial basis functions Excellence

- We offer best in class Radial Basis Functions (RBF) to drive CAE morphing from a list of source points and their displacements
- RBF are recognized to be one of the **best** mathematical tool for mesh morphing

$$f_{ast Radial Basis Functions for Engineering Applications} \begin{cases} s_x(x) = \sum_{i=1}^N \gamma_i^x \varphi(\|x - x_{s_i}\|) + \beta_1^x + \beta_2^x x + \beta_3^x y + \beta_4^x z \\ s_y(x) = \sum_{i=1}^N \gamma_i^y \varphi(\|x - x_{s_i}\|) + \beta_1^y + \beta_2^y x + \beta_3^y y + \beta_4^y z \\ s_z(x) = \sum_{i=1}^N \gamma_i^z \varphi(\|x - x_{s_i}\|) + \beta_1^z + \beta_2^z x + \beta_3^z y + \beta_4^z z \end{cases}$$

EU-funded research projects

4 EuroHPC

rbfCAE solution benefits

- No re-meshing
- Can handle any kind of mesh
- Can be integrated in the CAE solver (FEM/CFD/FSI)
- Highly parallelizable
- Robust process
- The same mesh topology is preserved (adjoint/ROM)
- CAD morphing (iso-brep)

www.rbf-morph.com

rbf

rbfCAE parametric models

- rbfCAE makes the CAE model
 parametric
- Shape parameters can be driven by an orchestrator
- Shape parameters can be used to generate snapshots for real time Digital Twins (ROM/AI)

- Released in 2024
- Read in STL, STEP
- Unity OpenCascade
- Solver independent process that supports many mesh formats
- Scriptable via Python

rbfCAE UI

- Released in 2024
- Read in STL, STEP
- Unity OpenCascade
- Solver independent process that supports many mesh formats
- Scriptable via Python

Main uses of rbfCAE

Usage	FEA	CFD	Optimizer	AI
Automated and quick variable design space exploration	\checkmark	\checkmark		
Optimization (Single physics or multi-physics) Shape optimization for stress reduction, mass reduction, fluid-structure interaction	\checkmark	\checkmark	\checkmark	
Digital twin development (static ROMs)	\checkmark	\checkmark	\checkmark	\checkmark
Lifing applications simulate defects such as corrosion pits, spalling of material, erosion, chips, etc.	\checkmark	\checkmark		
Examine the effects of non-conformance and manufacturing variability	\checkmark	\checkmark		
Robust Design	\checkmark	\checkmark	\checkmark	

Main uses of rbfCAE

Usage	FEA	CFD	Optimizer	ΑΙ
Automated and quick variable design space exploration	\checkmark	\checkmark		
Optimization (Single physics or multi-physics) Shape optimization for stress reduction, mass reduction, fluid-structure interaction	\checkmark	V	\checkmark	
Digital twin development (static ROMs)	\checkmark	\checkmark	\checkmark	\checkmark
Lifing applications simulate defects such as corrosion pits, spalling of material, erosion, chips, etc.	\checkmark	\checkmark		
Examine the effects of non-conformance and manufacturing variability	\checkmark	\checkmark		
Robust Design	\checkmark	\checkmark	\checkmark	

Served industries

100+ Global Customers

Study Objective

- Three competing requirements:
 - Styling
 - Structural performance
 - Aerodynamic efficiency
- Multi-physics and simulationdriven design
- Specific focus on electric vehicles

Case Study: 18" Wheel

- Parametric and BGM-based mesh morphing to optimize wheel performance
- Structural optimization to achieve mass reduction
- Aerodynamic evaluation with wheel mounted on AeroSUV model

Integrated Methodology

- Full CAE workflow
 - Mesh morphing (rbfCAE)
 - FEM (NX Nastran)
 - CFD (HELYX)
- rbfCAE mesh morphing: no full remeshing needed
- Automatic mesh updates across FEM and CFD solvers via rbfCAE platform

Parametric and BGM-based Morphing

- Parametric Morphing: controlled deformations via predefined parameters
 - Surface offsets applied internally
 - External faces preserved (styling constraint)
 - Minimum thickness constraint: 3.5 mm
- BGM Morphing: shape evolution driven by Von Mises stress distribution
 - Target stress: 72 MPa
 - Maximum local thickness reduction: 2 mm
 - Adaptive mass reduction in low-stress areas

FEA Setup

- Solver: NX Nastran
- Material: AlSi7Mg0.3
 aluminum alloy
- Mesh: ~260,000 second-order tetrahedral elements
- Analysis type: Static Structural
- Load cases: Impact, fatigue
- Peak stress (baseline): ~78
 MPa (Yield Strength: 190 MPa)

CFD Setup

- Solver: HELYX
- Mesh size: ~60 million cells
- Flow modeling: Steady-state RANS
- Turbulence model: k- ω SST
- Wheel modelling: MRF (Multiple Reference Frame)
- Speed: 140 km/h
- Drag coefficient (baseline): 0.302

Results

- Weight reduction per wheel: -0.4 kg
- Stress < Yield strength
- Slight Cd increase (0.302 → 0.304/0.305)
- Rear downforce improved
- Overall vehicle efficiency enhanced

Quantity	Baseline	Parametric Morphing	BGM Morphing
Mass [kg]	14.1	13.7	13.7
Von-Mises Stress [MPa]	78.1	81.3	75.9
Drag Coefficient (Cd)	0.302	0.304	0.305
Lift Coefficient (CI)	-0.013	-0.025	-0.021

Conclusions and Future Work

• Conclusions:

- Multi-physics optimization of wheels was successfully demonstrated
- rbfCAE enables fast, high-fidelity shape updates across FEM and CFD
- Both parametric and BGM morphing strategies reduced mass and preserved performance
- Integrated workflow improved design efficiency and flexibility
- Future Work:
 - Integration of AI and ROMs to enable realtime design exploration
 - Extension to full vehicle-level optimization (e.g., wheel + flow + suspension)
 - Enhanced user experience with rbfVR for immersive design review

Thank you!

marco.biancolini@rbf-morph.com

linkedin.com/company/rbf-morph

youtube.com/user/RbfMorph

rbf-morph.com